An Introduction to Stochastic Processes and Their Applications: Springer Series in Statistics
Autor Petar Todorovicen Limba Engleză Paperback – 21 dec 2011
Din seria Springer Series in Statistics
- 20% Preț: 1000.84 lei
- Preț: 387.99 lei
- 20% Preț: 630.97 lei
- 20% Preț: 816.43 lei
- 20% Preț: 697.13 lei
- 20% Preț: 444.72 lei
- 20% Preț: 881.51 lei
- 18% Preț: 1228.01 lei
- 18% Preț: 960.09 lei
- 18% Preț: 949.45 lei
- 18% Preț: 1379.34 lei
- 18% Preț: 788.41 lei
- 15% Preț: 643.29 lei
- 18% Preț: 1213.46 lei
- 15% Preț: 641.36 lei
- 15% Preț: 641.36 lei
- 15% Preț: 642.34 lei
- 18% Preț: 1106.29 lei
- 15% Preț: 648.02 lei
- 18% Preț: 945.38 lei
- 18% Preț: 1382.98 lei
- 18% Preț: 1550.15 lei
- 18% Preț: 1222.38 lei
- 15% Preț: 509.88 lei
- 18% Preț: 887.11 lei
- 18% Preț: 1103.46 lei
- 15% Preț: 645.08 lei
- 18% Preț: 1000.23 lei
- 15% Preț: 638.42 lei
- 18% Preț: 1662.33 lei
- 15% Preț: 639.11 lei
- 18% Preț: 1220.03 lei
- 18% Preț: 886.15 lei
- 18% Preț: 906.53 lei
- 18% Preț: 936.92 lei
- Preț: 388.74 lei
- Preț: 388.36 lei
- 18% Preț: 1380.76 lei
- Preț: 387.99 lei
- 18% Preț: 887.25 lei
- 18% Preț: 953.53 lei
- 18% Preț: 1236.15 lei
- 18% Preț: 957.43 lei
- 15% Preț: 582.07 lei
- 18% Preț: 997.57 lei
- 15% Preț: 638.61 lei
- 18% Preț: 800.47 lei
- 18% Preț: 722.30 lei
- 15% Preț: 645.08 lei
Preț: 635.80 lei
Preț vechi: 836.58 lei
-24% Nou
Puncte Express: 954
Preț estimativ în valută:
121.77€ • 125.46$ • 102.00£
121.77€ • 125.46$ • 102.00£
Carte tipărită la comandă
Livrare economică 19-25 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461397441
ISBN-10: 1461397448
Pagini: 308
Ilustrații: XIII, 290 p.
Dimensiuni: 156 x 244 x 16 mm
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
ISBN-10: 1461397448
Pagini: 308
Ilustrații: XIII, 290 p.
Dimensiuni: 156 x 244 x 16 mm
Ediția:Softcover reprint of the original 1st ed. 1992
Editura: Springer
Colecția Springer
Seria Springer Series in Statistics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
1 Basic Concepts and Definitions.- 1.1. Definition of a Stochastic Process.- 1.2. Sample Functions.- 1.3. Equivalent Stochastic Processes.- 1.4. Kolmogorov Construction.- 1.5. Principal Classes of Random Processes.- 1.6. Some Applications.- 1.7. Separability.- 1.8. Some Examples.- 1.9. Continuity Concepts.- 1.10. More on Separability and Continuity.- 1.11. Measurable Random Processes.- Problems and Complements.- 2 The Poisson Process and Its Ramifications.- 2.1. Introduction.- 2.2. Simple Point Process on R+.- 2.3. Some Auxiliary Results.- 2.4. Definition of a Poisson Process.- 2.5. Arrival Times ?k.- 2.6. Markov Property of N(t) and Its Implications.- 2.7. Doubly Stochastic Poisson Process.- 2.8. Thinning of a Point Process.- 2.9. Marked Point Processes.- 2.10. Modeling of Floods.- Problems and Complements.- 3 Elements of Brownian Motion.- 3.1. Definitions and Preliminaries.- 3.2. Hitting Times.- 3.3. Extremes of ?(t).- 3.4. Some Properties of the Brownian Paths.- 3.5. Law of the Iterated Logarithm.- 3.6. Some Extensions.- 3.7. The Ornstein-Uhlenbeck Process.- 3.8. Stochastic Integration.- Problems and Complements.- 4 Gaussian Processes.- 4.1. Review of Elements of Matrix Analysis.- 4.2. Gaussian Systems.- 4.3. Some Characterizations of the Normal Distribution.- 4.4. The Gaussian Process.- 4.5. Markov Gaussian Process.- 4.6. Stationary Gaussian Process.- Problems and Complements.- 5 L2 Space.- 5.1. Definitions and Preliminaries.- 5.2. Convergence in Quadratic Mean.- 5.3. Remarks on the Structure of L2.- 5.4. Orthogonal Projection.- 5.5. Orthogonal Basis.- 5.6. Existence of a Complete Orthonormal Sequence in L2.- 5.7. Linear Operators in a Hilbert Space.- 5.8. Projection Operators.- Problems and Complements.- 6 Second-Order Processes.- 6.1. Covariance FunctionC(s,t).- 6.2. Quadratic Mean Continuity and Differentiability.- 6.3. Eigenvalues and Eigenfunctions of C(s, t).- 6.4. Karhunen-Loeve Expansion.- 6.5. Stationary Stochastic Processes.- 6.6. Remarks on the Ergodicity Property.- Problems and Complements.- 7 Spectral Analysis of Stationary Processes.- 7.1. Preliminaries.- 7.2. Proof of the Bochner-Khinchin and Herglotz Theorems.- 7.3. Random Measures.- 7.4. Process with Orthogonal Increments.- 7.5. Spectral Representation.- 7.6. Ramifications of Spectral Representation.- 7.7. Estimation, Prediction, and Filtering.- 7.8. An Application.- 7.9. Linear Transformations.- 7.10. Linear Prediction, General Remarks.- 7.11. The Wold Decomposition.- 7.12. Discrete Parameter Processes.- 7.13. Linear Prediction.- 7.14. Evaluation of the Spectral Characteristic ?(?, h).- 7.15. General Form of Rational Spectral Density.- Problems and Complements.- 8 Markov Processes I.- 8.1. Introduction.- 8.2. Invariant Measures.- 8.3. Countable State Space.- 8.4. Birth and Death Process.- 8.5. Sample Function Properties.- 8.6. Strong Markov Processes.- 8.7. Structure of a Markov Chain.- 8.8. Homogeneous Diffusion.- Problems and Complements.- 9 Markov Processes II: Application of Semigroup Theory.- 9.1. Introduction and Preliminaries.- 9.2. Generator of a Semigroup.- 9.3. The Resolvent.- 9.4. Uniqueness Theorem.- 9.5. The Hille-Yosida Theorem.- 9.6. Examples.- 9.7. Some Refinements and Extensions.- Problems and Complements.- 10 Discrete Parameter Martingales.- 10.1. Conditional Expectation.- 10.2. Discrete Parameter Martingales.- 10.3. Examples.- 10.4. The Upcrossing Inequality.- 10.5. Convergence of Submartingales.- 10.6. Uniformly Integrable Martingales.- Problems and Complements.