Cantitate/Preț
Produs

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices: Springer Theses

Autor Monika Aidelsburger
en Limba Engleză Hardback – 22 dec 2015
This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system.
It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents.
The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 61696 lei  6-8 săpt.
  Springer International Publishing – 30 mar 2019 61696 lei  6-8 săpt.
Hardback (1) 62284 lei  6-8 săpt.
  Springer International Publishing – 22 dec 2015 62284 lei  6-8 săpt.

Din seria Springer Theses

Preț: 62284 lei

Preț vechi: 73275 lei
-15% Nou

Puncte Express: 934

Preț estimativ în valută:
11920 12575$ 9934£

Carte tipărită la comandă

Livrare economică 03-17 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319258270
ISBN-10: 3319258273
Pagini: 184
Ilustrații: XIII, 172 p. 76 illus., 2 illus. in color.
Dimensiuni: 155 x 235 x 13 mm
Greutate: 0.44 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Introduction.- Square Lattice with Magnetic field.- Artificial Gauge Fields with Laser-Assisted Tunneling.- Overview of the Experimental Setup and Measurement Techniques.- Staggered Magnetic Flux.- Harper-Hofstadter Model and Spin Hall Effect.- All-Optical Setup for Flux Rectification.- Chern-Number Measurement of Hofstadter Bands.- Conclusions and Outlook.

Textul de pe ultima copertă

This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system.
It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents.
The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.

Caracteristici

Nominated as an outstanding Ph.D. thesis by the Ludwig-Maximilians-Universität München, Germany Presents self-contained theoretical background information Provides detailed discussion of the experimental implementation Includes supplementary material: sn.pub/extras