Cantitate/Preț
Produs

Aspects of Scattering Amplitudes and Moduli Space Localization: Springer Theses

Autor Sebastian Mizera
en Limba Engleză Paperback – 25 sep 2021
This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization.
 After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those toscattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion.
 In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.

Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 60010 lei  6-8 săpt.
  Springer International Publishing – 25 sep 2021 60010 lei  6-8 săpt.
Hardback (1) 60585 lei  6-8 săpt.
  Springer International Publishing – 24 sep 2020 60585 lei  6-8 săpt.

Din seria Springer Theses

Preț: 60010 lei

Preț vechi: 70600 lei
-15% Nou

Puncte Express: 900

Preț estimativ în valută:
11487 12351$ 9576£

Carte tipărită la comandă

Livrare economică 19 decembrie 24 - 02 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783030530129
ISBN-10: 3030530124
Ilustrații: XVII, 134 p. 18 illus., 14 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.23 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Cuprins

Chapter1: Introduction.- Chapter2: Intersection Numbers of Twisted Di erential Forms.- Chapter3: Recursion Relations from Braid Matrices.- Chapter4: Further Examples of Intersection Numbers.- Chapter5: Conclusion.

Notă biografică

Dr. Sebastian Mizera is a member at the Institute for Advanced Study in Princeton, NJ. He graduated from the University of Cambridge with a bachelor's degree in natural sciences and a master's in mathematics. He obtained a PhD in theoretical physics from the Perimeter Institute and the University of Waterloo in Canada. Dr. Mizera's work focuses on the interconnections between scattering amplitudes in quantum field theories and the mathematics of algebraic geometry and topology.


Textul de pe ultima copertă

This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization.
 After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those to scattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion.
 In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.


Caracteristici

Nominated as an outstanding PhD thesis by the Perimeter Institute for Theoretical Physics, Canada Includes an accessible introduction to homology with coefficients in a local system Presents a powerful new geometric framework for the analytic study of scattering amplitudes