Automorphisms and Derivations of Associative Rings: Mathematics and its Applications, cartea 69
Autor V. Kharchenkoen Limba Engleză Hardback – 31 oct 1991
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 627.11 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 23 oct 2012 | 627.11 lei 6-8 săpt. | |
Hardback (1) | 633.31 lei 6-8 săpt. | |
SPRINGER NETHERLANDS – 31 oct 1991 | 633.31 lei 6-8 săpt. |
Din seria Mathematics and its Applications
- 26% Preț: 732.67 lei
- 26% Preț: 709.66 lei
- 26% Preț: 764.91 lei
- 13% Preț: 310.16 lei
- 26% Preț: 869.13 lei
- 23% Preț: 313.98 lei
- 13% Preț: 308.86 lei
- 22% Preț: 331.21 lei
- 13% Preț: 349.90 lei
- 13% Preț: 310.26 lei
- 22% Preț: 347.24 lei
- 31% Preț: 262.68 lei
- 22% Preț: 319.71 lei
- 14% Preț: 306.51 lei
- 26% Preț: 906.52 lei
- Preț: 381.78 lei
- 15% Preț: 632.99 lei
- 15% Preț: 624.42 lei
- 15% Preț: 629.04 lei
- 15% Preț: 629.04 lei
- Preț: 378.41 lei
- Preț: 382.89 lei
- 15% Preț: 633.49 lei
- 20% Preț: 632.91 lei
- 15% Preț: 631.56 lei
- Preț: 371.49 lei
- Preț: 381.78 lei
- 15% Preț: 638.58 lei
- 15% Preț: 639.52 lei
- Preț: 379.88 lei
- Preț: 383.06 lei
Preț: 633.31 lei
Preț vechi: 745.07 lei
-15% Nou
Puncte Express: 950
Preț estimativ în valută:
121.20€ • 127.10$ • 101.06£
121.20€ • 127.10$ • 101.06£
Carte tipărită la comandă
Livrare economică 07-21 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780792313823
ISBN-10: 0792313828
Pagini: 385
Ilustrații: XIV, 385 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.74 kg
Ediția:1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
ISBN-10: 0792313828
Pagini: 385
Ilustrații: XIV, 385 p.
Dimensiuni: 155 x 235 x 24 mm
Greutate: 0.74 kg
Ediția:1991
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and its Applications
Locul publicării:Dordrecht, Netherlands
Public țintă
ResearchCuprins
1. Structure of Rings.- 1.1 Baer Radical and Semiprimeness.- 1.2 Automorphism Groups and Lie Differential Algebras.- 1.3 Bergman-Isaacs Theorem. Shelter Integrality.- 1.4 Martindale Ring of Quotients.- 1.5 The Generalized Centroid of a Semiprime Ring.- 1.6 Modules over a Generalized Centroid.- 1.7 Extension of Automorphisms to a Ring of Quotients. Conjugation Modules.- 1.8 Extension of Derivations to a Ring of Quotients.- 1.9 The Canonical Sheaf of a Semiprime Ring.- 1.10 Invariant Sheaves.- 1.11 The Metatheorem.- 1.12 Stalks of Canonical and Invariant Sheaves.- 1.13 Martindale’s Theorem.- 1.14 Quite Primitive Rings.- 1.15 Rings of Quotients of Quite Primitive Rings.- 2. On Algebraic Independence of Automorphisms And Derivations.- 2.0 Trivial Algebraic Dependences.- 2.1 The Process of Reducing Polynomials.- 2.2 Linear Differential Identities with Automorphisms.- 2.3 Multilinear Differential Identities with Automorphisms.- 2.4 Differential Identities of Prime Rings.- 2.5 Differential Identities of Semiprime Rings.- 2.6 Essential Identities.- 2.7 Some Applications: Galois Extentions of Pi-Rings; Algebraic Automorphisms and Derivations; Associative Envelopes of Lie-Algebras of Derivations.- 3. The Galois Theory of Prime Rings (The Case Of Automorphisms).- 3.1 Basic Notions.- 3.2 Some Properties of Finite Groups of Outer Automorphisms.- 3.3 Centralizers of Finite-Dimensional Algebras.- 3.4 Trace Forms.- 3.5 Galois Groups.- 3.6 Maschke Groups. Prime Dimensions.- 3.7 Bimodule Properties of Fixed Rings.- 3.8 Ring of Quotients of a Fixed Ring.- 3.9 Galois Subrings for M-Groups.- 3.10 Correspondence Theorems.- 3.11 Extension of Isomorphisms.- 4. The Galois Theory of Prime Rings (The Case Of Derivations).- 4.1 Duality for Derivations in the Multiplication Algebra.- 4.2Transformation of Differential Forms.- 4.3 Universal Constants.- 4.4 Shirshov Finiteness.- 4.5 The Correspondence Theorem.- 4.6 Extension of Derivations.- 5. The Galois Theory of Semiprime Rings.- 5.1 Essential Trace Forms.- 5.2 Intermediate Subrings.- 5.3 The Correspondence Theorem for Derivations.- 5.4 Basic Notions of the Galois Theory of Semiprime Rings (the case of automorphisms).- 5.5 Stalks of an Invariant Sheaf for a Regular Group. Homogenous Idempotents.- 5.6 Principal Trace Forms.- 5.7 Galois Groups.- 5.8 Galois Subrings for Regular Closed Groups.- 5.9 Correspondence and Extension Theorems.- 5.10 Shirshov Finiteness. The Structure of Bimodules.- 6. Applications.- 6.1 Free Algebras.- 6.2 Noncommutative Invariants.- 6.3 Relations of a Ring with Fixed Rings.- 6.4 Relations of a Semiprime Ring with Ring of Constants.- 6.5 Hopf Algebras.- References.