Cantitate/Preț
Produs

Automorphisms and Equivalence Relations in Topological Dynamics: London Mathematical Society Lecture Note Series, cartea 412

Autor David B. Ellis, Robert Ellis
en Limba Engleză Paperback – 4 iun 2014
Focusing on the role that automorphisms and equivalence relations play in the algebraic theory of minimal sets provides an original treatment of some key aspects of abstract topological dynamics. Such an approach is presented in this lucid and self-contained book, leading to simpler proofs of classical results, as well as providing motivation for further study. Minimal flows on compact Hausdorff spaces are studied as icers on the universal minimal flow M. The group of the icer representing a minimal flow is defined as a subgroup of the automorphism group G of M, and icers are constructed explicitly as relative products using subgroups of G. Many classical results are then obtained by examining the structure of the icers on M, including a proof of the Furstenberg structure theorem for distal extensions. This book is designed as both a guide for graduate students, and a source of interesting new ideas for researchers.
Citește tot Restrânge

Din seria London Mathematical Society Lecture Note Series

Preț: 44244 lei

Nou

Puncte Express: 664

Preț estimativ în valută:
8471 8821$ 7029£

Carte tipărită la comandă

Livrare economică 14-28 februarie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781107633223
ISBN-10: 1107633222
Pagini: 281
Ilustrații: 80 exercises
Dimensiuni: 152 x 229 x 16 mm
Greutate: 0.43 kg
Ediția:New.
Editura: Cambridge University Press
Colecția Cambridge University Press
Seria London Mathematical Society Lecture Note Series

Locul publicării:New York, United States

Cuprins

Part I. Universal Constructions: 1. The Stone–Cech compactification βT; Appendix to Chapter 1. Ultrafilters and the construction of βT; 2. Flows and their enveloping semigroups; 3. Minimal sets and minimal right ideals; 4. Fundamental notions; 5. Quasi-factors and the circle operator; Appendix to Chapter 5. The Vietoris topology on 2^X; Part II. Equivalence Relations and Automorphisms: 6. Quotient spaces and relative products; 7. Icers on M and automorphisms of M; 8. Regular flows; 9. The quasi-relative product; Part III. The τ-Topology: 10. The τ-topology on Aut(X); 11. The derived group; 12. Quasi-factors and the τ-topology; Part IV. Subgroups of G and the Dynamics of Minimal Flows: 13. The proximal relation and the group P; 14. Distal flows and the group D; 15. Equicontinuous flows and the group E; Appendix to Chapter 15. Equicontinuity and the enveloping semigroup; 16. The regionally proximal relation; Part V. Extensions of Minimal Flows: 17. Open and highly proximal extensions; Appendix. Extremely disconnected flows; 18. Distal extensions of minimal flows; 19. Almost periodic extensions; 20. A tale of four theorems.

Notă biografică


Descriere

A lucid and self-contained treatment of many key ideas in topological dynamics, achieved by focusing on equivalence relations and automorphisms.