Cantitate/Preț
Produs

Basic Oka Theory in Several Complex Variables: Universitext

Autor Junjiro Noguchi
en Limba Engleză Paperback – 24 aug 2024
This book provides a new, comprehensive, and self-contained account of Oka theory as an introduction to function theory of several complex variables, mainly concerned with the Three Big Problems (Approximation, Cousin, Pseudoconvexity) that were solved by Kiyoshi Oka and form the basics of the theory. The purpose of the volume is to serve as a textbook in lecture courses right after complex function theory of one variable. The presentation aims to be readable and enjoyable both for those who are beginners in mathematics and for researchers interested in complex analysis in several variables and complex geometry.
The nature of the present book is evinced by its approach following Oka’s unpublished five papers of 1943 with his guiding methodological principle termed the “Joku-Iko Principle”, where historically the Pseudoconvexity Problem (Hartogs, Levi) was first solved in all dimensions, even for unramified Riemann domains as well.
The method that is used in the book is elementary and direct, not relying on the cohomology theory of sheaves nor on the L2-∂-bar method, but yet reaches the core of the theory with the complete proofs.
Two proofs for Levi’s Problem are provided: One is Oka’s original with the Fredholm integral equation of the second kind combined with the Joku-Iko Principle, and the other is Grauert’s by the well-known “bumping-method” with L. Schwartz’s Fredholm theorem, of which a self-contained, rather simple and short proof is given. The comparison of them should be interesting even for specialists.
In addition to the Three Big Problems, other basic material is dealt with, such as Poincaré’s non-biholomorphism between balls and polydisks, the Cartan–Thullen  theorem on holomorphic convexity, Hartogs’ separate analyticity, Bochner’s tube theorem, analytic interpolation, and others.
It is valuable for students and researchers alike to look into the original works of Kiyoshi Oka, which are not easy to find in books or monographs.
Citește tot Restrânge

Din seria Universitext

Preț: 35443 lei

Nou

Puncte Express: 532

Preț estimativ în valută:
6783 7135$ 5660£

Carte tipărită la comandă

Livrare economică 06-11 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789819720552
ISBN-10: 9819720559
Pagini: 235
Ilustrații: XVI, 221 p. 22 illus., 5 illus. in color.
Dimensiuni: 155 x 235 mm
Ediția:2024
Editura: Springer Nature Singapore
Colecția Springer
Seria Universitext

Locul publicării:Singapore, Singapore

Cuprins

1 Holomorphic Functions.- 2 Coherent Sheaves and Oka’s Joku-Iko Principle.- 3 Domains of Holomorphy.- 4 Pseudoconvex Domains I — Problem and Reduction.- 5 Pseudoconvex Domains II — Solution.

Notă biografică

The author is currently Professor Emeritus at The University of Tokyo and Tokyo Institute of Technology. 

Textul de pe ultima copertă

This book provides a new, comprehensive, and self-contained account of Oka theory as an introduction to function theory of several complex variables, mainly concerned with the Three Big Problems (Approximation, Cousin, Pseudoconvexity) that were solved by Kiyoshi Oka and form the basics of the theory. The purpose of the volume is to serve as a textbook in lecture courses right after complex function theory of one variable. The presentation aims to be readable and enjoyable both for those who are beginners in mathematics and for researchers interested in complex analysis in several variables and complex geometry.
The nature of the present book is evinced by its approach following Oka’s unpublished five papers of 1943 with his guiding methodological principle termed the “Joku-Iko Principle”, where historically the Pseudoconvexity Problem (Hartogs, Levi) was first solved in all dimensions, even for unramified Riemann domains as well.
The method that is used in the book is elementary and direct, not relying on the cohomology theory of sheaves nor on the L2-∂-bar method, but yet reaches the core of the theory with the complete proofs.
Two proofs for Levi’s Problem are provided: One is Oka’s original with the Fredholm integral equation of the second kind combined with the Joku-Iko Principle, and the other is Grauert’s by the well-known “bumping-method” with L. Schwartz’s Fredholm theorem, of which a self-contained, rather simple and short proof is given. The comparison of them should be interesting even for specialists.
In addition to the Three Big Problems, other basic material is dealt with, such as Poincaré’s non-biholomorphism between balls and polydisks, the Cartan–Thullen  theorem on holomorphic convexity, Hartogs’ separate analyticity, Bochner’s tube theorem, analytic interpolation, and others.
It is valuable for students and researchers alike to look into the original works of Kiyoshi Oka, which are not easy to find in books or monographs.

Caracteristici

Serves as a textbook in lecture courses of function theory of several complex variables right after one variable Is based on Oka’s first coherence theorem and the Joku-Iko Principle Proves Levi's problem by Oka's original Fredholm integral equation