Bayesian Optimization: Theory and Practice Using Python
Autor Peng Liuen Limba Engleză Paperback – 24 mar 2023
The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a “develop from scratch” method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completingthis book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.
What You Will Learn
- Apply Bayesian Optimization to build better machine learning models
- Understand and research existing and new Bayesian Optimization techniques
- Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working
- Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization
Who This Book Is For
Beginner to intermediate level professionals in machine learning, analytics or other roles relevant in data science.
Preț: 280.54 lei
Preț vechi: 350.68 lei
-20% Nou
Puncte Express: 421
Preț estimativ în valută:
53.69€ • 55.71$ • 44.87£
53.69€ • 55.71$ • 44.87£
Carte disponibilă
Livrare economică 25 februarie-11 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781484290620
ISBN-10: 1484290623
Pagini: 234
Ilustrații: XV, 234 p. 84 illus., 20 illus. in color.
Dimensiuni: 178 x 254 mm
Greutate: 0.45 kg
Ediția:1st ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
ISBN-10: 1484290623
Pagini: 234
Ilustrații: XV, 234 p. 84 illus., 20 illus. in color.
Dimensiuni: 178 x 254 mm
Greutate: 0.45 kg
Ediția:1st ed.
Editura: Apress
Colecția Apress
Locul publicării:Berkeley, CA, United States
Cuprins
Chapter 1: Bayesian Optimization Overview.- Chapter 2: Gaussian Process.- Chapter 3: Bayesian Decision Theory and Expected Improvement.- Chapter 4 : Gaussian Process Regression with GPyTorch.- Chapter 5: Monte Carlo Acquisition Function with Sobol Sequences and Random Restart.- Chapter 6 : Knowledge Gradient: Nested Optimization versus One-shot Learning.- Chapter 7 : Case Study: Tuning CNN Learning Rate with BoTorch.
Notă biografică
Peng Liu is an assistant professor of quantitative finance (practice) at Singapore Management University and an adjunct researcher at the National University of Singapore. He holds a Ph.D. in statistics from the National University of Singapore and has ten years of working experience as a data scientist across the banking, technology, and hospitality industries
Textul de pe ultima copertă
This book covers the essential theory and implementation of popular Bayesian optimization techniques in an intuitive and well-illustrated manner. The techniques covered in this book will enable you to better tune the hyperparemeters of your machine learning models and learn sample-efficient approaches to global optimization.
The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a “develop from scratch” method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.
The book begins by introducing different Bayesian Optimization (BO) techniques, covering both commonly used tools and advanced topics. It follows a “develop from scratch” method using Python, and gradually builds up to more advanced libraries such as BoTorch, an open-source project introduced by Facebook recently. Along the way, you’ll see practical implementations of this important discipline along with thorough coverage and straightforward explanations of essential theories. This book intends to bridge the gap between researchers and practitioners, providing both with a comprehensive, easy-to-digest, and useful reference guide. After completing this book, you will have a firm grasp of Bayesian optimization techniques, which you’ll be able to put into practice in your own machine learning models.
You will:
- Apply Bayesian Optimization to build better machine learning models
- Understand and research existing and new Bayesian Optimization techniques
- Leverage high-performance libraries such as BoTorch, which offer you the ability to dig into and edit the inner working
- Dig into the inner workings of common optimization algorithms used to guide the search process in Bayesian optimization
Caracteristici
Well-illustrated introduction to the concepts and theory of Bayesian optimization techniques Gives a detailed walk-through of implementations of Bayesian optimization techniques in Python Includes case studies on improving machine learning performance using Bayesian optimization techniques