Beyond Multiple Linear Regression: Applied Generalized Linear Models And Multilevel Models in R: Chapman & Hall/CRC Texts in Statistical Science
Autor Paul Roback, Julie Legleren Limba Engleză Paperback – 27 mai 2024
A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 305.51 lei 6-8 săpt. | |
CRC Press – 27 mai 2024 | 305.51 lei 6-8 săpt. | |
Hardback (1) | 595.00 lei 3-5 săpt. | +31.57 lei 6-12 zile |
CRC Press – 29 dec 2020 | 595.00 lei 3-5 săpt. | +31.57 lei 6-12 zile |
Din seria Chapman & Hall/CRC Texts in Statistical Science
- 5% Preț: 635.71 lei
- 8% Preț: 572.20 lei
- 9% Preț: 617.40 lei
- 8% Preț: 552.91 lei
- 9% Preț: 595.00 lei
- Preț: 356.63 lei
- 8% Preț: 570.43 lei
- 9% Preț: 681.68 lei
- 9% Preț: 602.05 lei
- 8% Preț: 551.97 lei
- 9% Preț: 1260.30 lei
- 9% Preț: 613.84 lei
- 5% Preț: 374.41 lei
- 9% Preț: 600.69 lei
- 8% Preț: 444.23 lei
- 8% Preț: 547.27 lei
- 8% Preț: 544.47 lei
- 8% Preț: 548.93 lei
- Preț: 356.63 lei
- 8% Preț: 496.94 lei
- 9% Preț: 608.07 lei
- 8% Preț: 419.81 lei
- 9% Preț: 610.93 lei
- 20% Preț: 508.92 lei
- 9% Preț: 608.07 lei
- 8% Preț: 496.37 lei
- Preț: 357.59 lei
- 8% Preț: 547.09 lei
- Preț: 341.42 lei
- 8% Preț: 548.14 lei
- 9% Preț: 772.11 lei
- Preț: 348.11 lei
- 8% Preț: 549.91 lei
- 8% Preț: 444.54 lei
- 9% Preț: 641.60 lei
- Preț: 389.37 lei
- Preț: 349.09 lei
- Preț: 316.73 lei
- Preț: 341.85 lei
- Preț: 349.09 lei
- 9% Preț: 595.90 lei
- 9% Preț: 593.60 lei
- 9% Preț: 599.55 lei
- 11% Preț: 673.60 lei
- 8% Preț: 510.12 lei
- 8% Preț: 511.06 lei
- 8% Preț: 563.39 lei
Preț: 305.51 lei
Preț vechi: 349.09 lei
-12% Nou
Puncte Express: 458
Preț estimativ în valută:
58.49€ • 60.79$ • 48.49£
58.49€ • 60.79$ • 48.49£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780367680442
ISBN-10: 0367680440
Pagini: 436
Dimensiuni: 156 x 234 x 27 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
ISBN-10: 0367680440
Pagini: 436
Dimensiuni: 156 x 234 x 27 mm
Greutate: 0.45 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman & Hall/CRC Texts in Statistical Science
Locul publicării:Boca Raton, United States
Notă biografică
Authors
Paul Roback is the Kenneth O. Bjork Distinguished Professor of Statistics and Data Science and Julie Legler is Professor Emeritus of Statistics at St. Olaf College in Northfield, MN. Both are Fellows of the American Statistical Association and are founders of the Center for Interdisciplinary Research at St. Olaf. Dr. Roback is the past Chair of the ASA Section on Statistics and Data Science Education, conducts applied research using multilevel modeling, text analysis, and Bayesian methods, and has been a statistical consultant in the pharmaceutical, health care, and food processing industries. Dr. Legler is past Chair of the ASA/MAA Joint Committee on Undergraduate Statistics, is a co-author ofStat2: Modelling with Regression and ANOVA, and was a biostatistician at the National Cancer Institute.
Paul Roback is the Kenneth O. Bjork Distinguished Professor of Statistics and Data Science and Julie Legler is Professor Emeritus of Statistics at St. Olaf College in Northfield, MN. Both are Fellows of the American Statistical Association and are founders of the Center for Interdisciplinary Research at St. Olaf. Dr. Roback is the past Chair of the ASA Section on Statistics and Data Science Education, conducts applied research using multilevel modeling, text analysis, and Bayesian methods, and has been a statistical consultant in the pharmaceutical, health care, and food processing industries. Dr. Legler is past Chair of the ASA/MAA Joint Committee on Undergraduate Statistics, is a co-author ofStat2: Modelling with Regression and ANOVA, and was a biostatistician at the National Cancer Institute.
Cuprins
- Review of Multiple Linear Regression 2. Beyond Least Squares: Using Likelihoods to Fit and Compare Models 3. Distribution Theory 4. Poisson Regression 5. Generalized Linear Models (GLMs): A Unifying Theory 6. Logistic Regression 7. Correlated Data 8. Introduction to Multilevel Models 9. Two Level Longitudinal Data 10. Multilevel Data With More Than Two Levels 11. Multilevel Generalized Linear Models
Recenzii
"Overall, this is an excellent text that is highly appropriate for undergraduate students. I am a really big fan of Chapter 2. The authors introduce the concepts of likelihood and model comparisons via likelihood in a very gentle and intuitive way. It will be very useful for the wide audience anticipated for the course we are designing. In Chapter 4, the authors do an excellent job discussing some of the common ‘extensions’ of Poisson regression that are likely to be observed in practice (overdispersion and ZIP). In particular, they do an excellent job describing situations that might lead to zero-inflate Poissons. The use of case studies across all chapters is a major strength of the textbook."
-Jessica Chapman, St. Lawrence University
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics…In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." ---Kirsten Eilertson, Colorado State University
"Overall, this is an excellent text that is highly appropriate for undergraduate students. I am a really big fan of Chapter 2. The authors introduce the concepts of likelihood and model comparisons via likelihood in a very gentle and intuitive way. It will be very useful for the wide audience anticipated for the course we are designing. In Chapter 4, the authors do an excellent job discussing some of the common ‘extensions’ of Poisson regression that are likely to be observed in practice (overdispersion and ZIP). In particular, they do an excellent job describing situations that might lead to zero-inflate Poissons.
The use of case studies across all chapters is a major strength of the textbook." (Jessica Chapman, St. Lawrence University)
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics…In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." (Kirsten Eilertson, Colorado State University)
Kirsten.Eilertson@colostate.edu
"There are a lot of books about linear models, but it is not that common to find a really good book about this interesting and complex subject. The book Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R can for sure be included in this category of good books about linear models"
- David Manteigas, International Society for Clinical Biostatistics, 72, 2021
-Jessica Chapman, St. Lawrence University
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics…In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." ---Kirsten Eilertson, Colorado State University
"Overall, this is an excellent text that is highly appropriate for undergraduate students. I am a really big fan of Chapter 2. The authors introduce the concepts of likelihood and model comparisons via likelihood in a very gentle and intuitive way. It will be very useful for the wide audience anticipated for the course we are designing. In Chapter 4, the authors do an excellent job discussing some of the common ‘extensions’ of Poisson regression that are likely to be observed in practice (overdispersion and ZIP). In particular, they do an excellent job describing situations that might lead to zero-inflate Poissons.
The use of case studies across all chapters is a major strength of the textbook." (Jessica Chapman, St. Lawrence University)
"This text would be ideal for statistics undergrad majors & minors as a 2nd or 3rd course in statistics…In particular, this book intuitively covers many topics without delving into technical proofs and details which are not needed for successful application of the methods described. It is a strength that it uses the software R. Use of R is a skill welcomed in any industry, and is not a burden for students to obtain. The book emphasizes methods as well as numerical literacy. For example, it guides the student in how to assess the appropriateness of methods (e.g. assumptions of linear model), not just the use and interpretation of the results. There is a strong focus on understanding and checking assumptions, as well as the effect violations of those assumptions will have on the result. I think this may be an effective way to train the reader to think like a statistician, without overwhelming the reader with technical details." (Kirsten Eilertson, Colorado State University)
Kirsten.Eilertson@colostate.edu
"There are a lot of books about linear models, but it is not that common to find a really good book about this interesting and complex subject. The book Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R can for sure be included in this category of good books about linear models"
- David Manteigas, International Society for Clinical Biostatistics, 72, 2021
Descriere
For advanced undergraduate or non-major graduate students in Advanced Statistical Modeling or Regression II and courses in Generalized Linear Models, Longitudinal Data Analysis, Correlated Data, Multilevel Models. Material on R at the end of each chapter. Solutions manual for qualified instructors.