Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration: Springer Theses
Autor Quan Wangen Limba Engleză Hardback – 16 aug 2013
Results on charge multiplicity asymmetry in Au+Au and d+Au collisions at 200 GeV by the STAR experiment are reported. It was found that the correlation results could not be explained by CME alone. Additionally, the charge separation signal as a function of the measured azimuthal angle range as well as the event-by-event anisotropy parameter are studied. These results indicate that the charge separation effect appears to be in-plane rather than out-of-plane. It is discovered that the charge separation effect is proportional to the event-by-event azimuthal anisotropy and consistent with zero in events with zero azimuthal anisotropy.
These studies suggest that the charge separation effect, within the statistical error, may be a net effect of event anisotropy and correlated particle production. A potential upper limit on the CME is also presented through this data.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 633.68 lei 6-8 săpt. | |
Springer International Publishing – 23 aug 2016 | 633.68 lei 6-8 săpt. | |
Hardback (1) | 641.71 lei 6-8 săpt. | |
Springer International Publishing – 16 aug 2013 | 641.71 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1154.07 lei
- Preț: 389.88 lei
- 15% Preț: 646.94 lei
- 18% Preț: 1220.45 lei
- Preț: 399.29 lei
- 18% Preț: 997.88 lei
- 18% Preț: 941.05 lei
- Preț: 544.53 lei
- 15% Preț: 643.16 lei
- 15% Preț: 642.68 lei
- 15% Preț: 639.25 lei
- 20% Preț: 558.82 lei
- 18% Preț: 943.43 lei
- 18% Preț: 1116.26 lei
- 15% Preț: 640.06 lei
- 15% Preț: 640.06 lei
- Preț: 276.68 lei
- 15% Preț: 636.45 lei
- 18% Preț: 891.17 lei
- 15% Preț: 640.88 lei
- Preț: 389.70 lei
- 20% Preț: 563.89 lei
- Preț: 393.35 lei
- 15% Preț: 637.93 lei
- 15% Preț: 641.85 lei
- 18% Preț: 1112.30 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1103.62 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1225.94 lei
- 18% Preț: 944.99 lei
- 18% Preț: 944.19 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1229.10 lei
- 15% Preț: 640.06 lei
- 18% Preț: 1217.27 lei
- 15% Preț: 636.80 lei
- 18% Preț: 1000.87 lei
- 15% Preț: 635.96 lei
- 15% Preț: 640.88 lei
- Preț: 387.20 lei
- 18% Preț: 999.45 lei
- Preț: 385.25 lei
- Preț: 385.25 lei
- 18% Preț: 1109.92 lei
- 18% Preț: 1110.72 lei
- Preț: 386.99 lei
- 15% Preț: 637.13 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 641.71 lei
Preț vechi: 754.95 lei
-15% Nou
Puncte Express: 963
Preț estimativ în valută:
122.85€ • 126.41$ • 103.55£
122.85€ • 126.41$ • 103.55£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319007557
ISBN-10: 3319007556
Pagini: 156
Ilustrații: XXI, 134 p. 77 illus., 72 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.45 kg
Ediția:2013
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319007556
Pagini: 156
Ilustrații: XXI, 134 p. 77 illus., 72 illus. in color.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.45 kg
Ediția:2013
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction.- Experiment.- Data Analysis.- Results and Discussions.- Summary.- Appendix.
Notă biografică
Current affiliation:
Quan Wang
University of Kansas
Department of Physics and Astronomy
1082 Malott, 1251 Wescoe Hall Dr.
Lawrence, KS 66045-7582
Research performed at:
Purdue University
West Lafayette, IN
USA
Quan Wang received his PhD in 2012 from Purdue University. His work has been recognized with the George W. Tautfest Award from Purdue University for "showing outstanding promise in High Energy Physics."
Quan Wang
University of Kansas
Department of Physics and Astronomy
1082 Malott, 1251 Wescoe Hall Dr.
Lawrence, KS 66045-7582
Research performed at:
Purdue University
West Lafayette, IN
USA
Quan Wang received his PhD in 2012 from Purdue University. His work has been recognized with the George W. Tautfest Award from Purdue University for "showing outstanding promise in High Energy Physics."
Textul de pe ultima copertă
It has been suggested that local parity violation (LPV) in Quantum Chromodynamics (QCD) would lead to charge separation of quarks by the Chiral Magnetic Effect (CME) in heavy ion collisions. Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration presents the detailed study of charge separation with respect to the event plane.
Results on charge multiplicity asymmetry in Au+Au and d+Au collisions at 200 GeV by the STAR experiment are reported. It was found that the correlation results could not be explained by CME alone. Additionally, the charge separation signal as a function of the measured azimuthal angle range as well as the event-by-event anisotropy parameter are studied. These results indicate that the charge separation effect appears to be in-plane rather than out-of-plane. It is discovered that the charge separation effect is proportional to the event-by-event azimuthal anisotropy and consistent with zero in events with zero azimuthal anisotropy.
These studies suggest that the charge separation effect, within the statistical error, may be a net effect of event anisotropy and correlated particle production. A potential upper limit on the CME is also presented through this data.
Results on charge multiplicity asymmetry in Au+Au and d+Au collisions at 200 GeV by the STAR experiment are reported. It was found that the correlation results could not be explained by CME alone. Additionally, the charge separation signal as a function of the measured azimuthal angle range as well as the event-by-event anisotropy parameter are studied. These results indicate that the charge separation effect appears to be in-plane rather than out-of-plane. It is discovered that the charge separation effect is proportional to the event-by-event azimuthal anisotropy and consistent with zero in events with zero azimuthal anisotropy.
These studies suggest that the charge separation effect, within the statistical error, may be a net effect of event anisotropy and correlated particle production. A potential upper limit on the CME is also presented through this data.
Caracteristici
Nominated by Purdue University, USA, as an outstanding Ph.D. thesis Devises a new method of studying charge separation versus the event structure in heavy-ion collisions Discovers that charge separation is proportional to the event structure, indicating the observed signal is dominated by an event-structure-related background Includes supplementary material: sn.pub/extras