Cantitate/Preț
Produs

Classical Tessellations and Three-Manifolds: Universitext

Autor José María Montesinos-Amilibia
en Limba Engleză Paperback – sep 1987
This unusual book, richly illustrated with 29 colour illustrations and about 200 line drawings, explores the relationship between classical tessellations and three-manifolds. In his original and entertaining style, the author provides graduate students with a source of geometrical insight into low-dimensional topology. Researchers in this field will find here an account of a theory that is on the one hand known to them but here is "clothed in a different garb" and can be used as a source for seminars on low-dimensional topology, or for preparing independent study projects for students, or again as the basis of a reading course. 
Citește tot Restrânge

Din seria Universitext

Preț: 52715 lei

Preț vechi: 62018 lei
-15% Nou

Puncte Express: 791

Preț estimativ în valută:
10092 10530$ 8460£

Carte tipărită la comandă

Livrare economică 12-26 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540152910
ISBN-10: 3540152911
Pagini: 256
Ilustrații: XVII, 230 p. 2 illus.
Dimensiuni: 170 x 244 x 13 mm
Greutate: 0.41 kg
Ediția:1987
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Professional/practitioner

Cuprins

One.- S1-Bundles Over Surfaces.- 1.1 The spherical tangent bundle of the 2-sphere S2.- 1.2 The S1-bundles of oriented closed surfaces.- 1.3 The Euler number of ST(S2).- 1.4 The Euler number as a self-intersection number.- 1.5 The Hopf fibration.- 1.6 Description of non-orientable surfaces.- 1.7 S1-bundles over Nk.- 1.8 An illustrative example: IRP2 ? ?P2.- 1.9 The projective tangent S1-bundles.- Two.- Manifolds of Tessellations on the Euclidean Plane.- 2.1 The manifold of square-tilings.- 2.2 The isometries of the euclidean plane.- 2.3 Interpretation of the manifold of squaretilings.- 2.4 The subgroup ?.- 2.5 The quotient ?\E(2).- 2.6 The tessellations of the euclidean plane.- 2.7 The manifolds of euclidean tessellations.- 2.8 Involutions in the manifolds of euclidean tessellations.- 2.9 The fundamental groups of the manifolds of euclidean tessellations.- 2.10 Presentations of the fundamental groups of the manifolds M(?).- 2.11 The groups $$ \tilde \Gamma $$ as 3-dimensional crystallographic groups.- Appendix A.- Orbifolds.- Three.- Manifolds of Spherical Tessellations.- 3.1 The isometries of the 2-sphere.- 3.2 The fundamental group of SO(3).- 3.3 Review of quaternions.- 3.4 Right-helix turns.- 3.5 Left-helix turns.- 3.6 The universal cover of SO(4).- 3.7 The finite subgroups of SO(3).- 3.8 The finite subgroups of the quaternions.- 3.9 Description of the manifolds of tessellations.- 3.10 Prism manifolds.- 3.11 The octahedral space.- 3.12 The truncated-cube space.- 3.13 The dodecahedral space.- 3.14 Exercises on coverings.- 3.15 Involutions in the manifolds of spherical tessellations.- 3.16 The groups $$ \tilde \Gamma $$ as groups of tessellations of S3.- Four.- Seifert Manifolds.- 4.1 Definition.- 4.2 Invariants.- 4.3 Constructing the manifold from the invariants.- 4.4 Change of orientation and normalization.- 4.5 The manifolds of euclidean tessellations as Seifert manifolds.- 4.6 The manifolds of spherical tessellations as Seifert manifolds.- 4.7 Involutions on Seifert manifolds.- 4.8 Involutions on the manifolds of tessellations.- Five.- Manifolds of Hyperbolic Tessellations.- 5.1 The hyperbolic tessellations.- 5.2 The groups S?mn, 1/? + 1/m + 1/n < 1.- 5.3 The manifolds of hyperbolic tessellations.- 5.4 The S1-action.- 5.5 Computing b.- 5.6 Involutions.- Appendix B.- The Hyperbolic Plane.- B.5 Metric.- B.6 The complex projective line.- B.7 The stereographic projection.- B.8 Interpreting G*.- B.10 The parabolic group.- B.11 The elliptic group.- B.12 The hyperbolic group.- Source of the ornaments placed at the end of the chapters.- References.- Further reading.- Notes to Plate I.- Notes to Plate II.

Textul de pe ultima copertă

This unusual book, richly illustrated with 29 colour illustrations and about 200 line drawings, explores the relationship between classical tessellations and three-manifolds. In his original and entertaining style, the author provides graduate students with a source of geometrical insight into low-dimensional topology. Researchers in this field will find here an account of a theory that is on the one hand known to them but here is presented in a very different framework.

Caracteristici

Richly illustrated with 29 colour plates and over 200 line drawings Deals with euclidean,spherical and hyperbolic tessellations An unorthodox book, without explicit statements of theorems, but with geometrical descriptions and diagrams Includes an appendix on orbifolds