Complex Semisimple Lie Algebras: Springer Monographs in Mathematics
Autor Jean Pierre Serre Traducere de Glen Jonesen Limba Engleză Paperback – 21 oct 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (2) | 373.45 lei 6-8 săpt. | |
Springer – 23 oct 1987 | 373.45 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 21 oct 2012 | 406.42 lei 6-8 săpt. | |
Hardback (1) | 475.02 lei 6-8 săpt. | |
Springer Berlin, Heidelberg – 12 dec 2000 | 475.02 lei 6-8 săpt. |
Din seria Springer Monographs in Mathematics
- Preț: 252.65 lei
- 18% Preț: 753.21 lei
- 24% Preț: 777.43 lei
- 20% Preț: 696.00 lei
- 18% Preț: 953.57 lei
- 20% Preț: 574.69 lei
- 20% Preț: 818.27 lei
- 24% Preț: 740.02 lei
- 15% Preț: 597.11 lei
- 24% Preț: 1598.57 lei
- Preț: 614.96 lei
- 18% Preț: 779.76 lei
- Preț: 389.76 lei
- 15% Preț: 639.91 lei
- 18% Preț: 1215.32 lei
- 15% Preț: 491.37 lei
- Preț: 385.06 lei
- 18% Preț: 1380.56 lei
- 18% Preț: 783.80 lei
- 18% Preț: 900.78 lei
- Preț: 390.35 lei
- 15% Preț: 646.19 lei
- 15% Preț: 459.93 lei
- 15% Preț: 637.16 lei
- Preț: 399.45 lei
- Preț: 383.36 lei
- 15% Preț: 638.60 lei
- 15% Preț: 571.37 lei
- 15% Preț: 632.64 lei
- 15% Preț: 636.83 lei
- 18% Preț: 887.31 lei
- 15% Preț: 642.33 lei
- 18% Preț: 886.66 lei
- 18% Preț: 891.96 lei
- 18% Preț: 878.45 lei
- 15% Preț: 648.42 lei
- 18% Preț: 788.75 lei
- 15% Preț: 650.19 lei
- 15% Preț: 635.73 lei
- Preț: 378.05 lei
- 15% Preț: 692.50 lei
- 18% Preț: 1227.11 lei
- Preț: 402.29 lei
- 18% Preț: 1013.78 lei
- 18% Preț: 969.37 lei
- 15% Preț: 629.60 lei
- 15% Preț: 632.51 lei
- Preț: 382.22 lei
- 18% Preț: 949.06 lei
- 15% Preț: 637.97 lei
Preț: 406.42 lei
Nou
Puncte Express: 610
Preț estimativ în valută:
77.80€ • 80.02$ • 64.55£
77.80€ • 80.02$ • 64.55£
Carte tipărită la comandă
Livrare economică 19 februarie-05 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642632228
ISBN-10: 364263222X
Pagini: 88
Ilustrații: IX, 75 p.
Dimensiuni: 155 x 235 x 5 mm
Greutate: 0.14 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 364263222X
Pagini: 88
Ilustrații: IX, 75 p.
Dimensiuni: 155 x 235 x 5 mm
Greutate: 0.14 kg
Ediția:Softcover reprint of the original 1st ed. 2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I Nilpotent Lie Algebras and Solvable Lie Algebras.- 1. Lower Central Series.- 2. Definition of Nilpotent Lie Algebras.- 3. An Example of a Nilpotent Algebra.- 4. Engel’s Theorems.- 5. Derived Series.- 6. Definition of Solvable Lie Algebras.- 7. Lie’s Theorem.- 8. Cartan’s Criterion.- II Semisimple Lie Algebras (General Theorems).- 1. Radical and Semisimpiicity.- 2. The Cartan-Killing Criterion.- 3. Decomposition of Semisimple Lie Algebras.- 4. Derivations of Semisimple Lie Algebras.- 5. Semisimple Elements and Nilpotent Elements.- 6. Complete Reducibility Theorem.- 7. Complex Simple Lie Algebras.- 8. The Passage from Real to Complex.- III Cartan Subalgebras.- 1. Definition of Cartan Subalgebras.- 2. Regular Elements: Rank.- 3. The Cartan Subalgebra Associated with a Regular Element.- 4. Conjugacy of Cartan Subalgebras.- 5. The Semisimple Case.- 6. Real Lie Algebras.- IV The Algebra SI2 and Its Representations.- 1. The Lie Algebra sl2.- 2. Modules, Weights, Primitive Elements.- 3. Structure of the Submodule Generated by a Primitive Element.- 4. The Modules Wm.- 5. Structure of the Finite-Dimensional g-Modules.- 6. Topological Properties of the Group SL2.- V Root Systems.- 1. Symmetries.- 2. Definition of Root Systems.- 3. First Examples.- 4. The Weyl Group.- 5. Invariant Quadratic Forms.- 6. Inverse Systems.- 7. Relative Position of Two Roots.- 8. Bases.- 9. Some Properties of Bases.- 10. Relations with the Weyl Group.- 11. The Cartan Matrix.- 12. The Coxeter Graph.- 13. Irreducible Root Systems.- 14. Classification of Connected Coxeter Graphs.- 15. Dynkin Diagrams.- 16. Construction of Irreducible Root Systems.- 17. Complex Root Systems.- VI Structure of Semisimple Lie Algebras.- 1. Decomposition of g.- 2. Proof of Theorem 2.- 3. Borei Subalgebras.- 4. WeylBases.- 5. Existence and Uniqueness Theorems.- 6. Chevalley’s Normalization.- Appendix. Construction of Semisimple Lie Algebras by Generators and Relations.- VII Linear Representations of Semisimple Lie Algebras.- 1. Weights.- 2. Primitive Elements.- 3. Irreducible Modules with a Highest Weight.- 4. Finite-Dimensional Modules.- 5. An Application to the Weyl Group.- 6. Example: sln+1.- 7. Characters.- 8. H. Weyl’s formula.- VIII Complex Groups and Compact Groups.- 1. Cartan Subgroups.- 2. Characters.- 3. Relations with Representations.- 4. Berel Subgroups.- 5. Construction of Irreducible Representations from Boret Subgroups.- 6. Relations with Algebraic Groups.- 7. Relations with Compact Groups.
Recenzii
From the reviews of the French edition:
"...the book is intended for those who have an acquaintance with the basic parts of the theory, namely, with those general theorems on Lie algebras which do not depend on the notion of Cartan subalgebra. The author begins with a summary of these general theorems and then discusses in detail the structure and representation theory of complex semisimple Lie algebras. One recognizes here a skillful ordering of the material, many simplifications of classical arguments and a new theorem describing fundamental relations between canonical generators of semisimple Lie algebras. The classical theory being thus introduced in such modern form, the reader can quickly reach the essence of the theory through the present book." (Mathematical Reviews)
"...the book is intended for those who have an acquaintance with the basic parts of the theory, namely, with those general theorems on Lie algebras which do not depend on the notion of Cartan subalgebra. The author begins with a summary of these general theorems and then discusses in detail the structure and representation theory of complex semisimple Lie algebras. One recognizes here a skillful ordering of the material, many simplifications of classical arguments and a new theorem describing fundamental relations between canonical generators of semisimple Lie algebras. The classical theory being thus introduced in such modern form, the reader can quickly reach the essence of the theory through the present book." (Mathematical Reviews)
Textul de pe ultima copertă
These short notes, already well-known in their original French edition, give the basic theory of semisimple Lie algebras over the complex numbers, including classification theorem. The author begins with a summary of the general properties of nilpotent, solvable, and semisimple Lie algebras. Subsequent chapters introduce Cartan subalgebras, root systems, and linear representations. The last chapter discusses the connection between Lie algebras, complex groups and compact groups; it is intended to guide the reader towards further study.
Caracteristici
Includes supplementary material: sn.pub/extras