Cantitate/Preț
Produs

Linear Algebraic Groups: Graduate Texts in Mathematics, cartea 126

Autor Armand Borel
en Limba Engleză Hardback – 17 apr 1991
This revised, enlarged edition of Linear Algebraic Groups (1969) starts by presenting foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces. It then turns to solvable groups, general properties of linear algebraic groups, and Chevally’s structure theory of reductive groups over algebraically closed groundfields. It closes with a focus on rationality questions over non-algebraically closed fields.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 41362 lei  43-57 zile
  Springer – 30 sep 2012 41362 lei  43-57 zile
Hardback (1) 44407 lei  38-44 zile
  Springer – 17 apr 1991 44407 lei  38-44 zile

Din seria Graduate Texts in Mathematics

Preț: 44407 lei

Nou

Puncte Express: 666

Preț estimativ în valută:
8499 8828$ 7059£

Carte tipărită la comandă

Livrare economică 29 ianuarie-04 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387973708
ISBN-10: 0387973702
Pagini: 308
Dimensiuni: 155 x 235 x 22 mm
Greutate: 0.57 kg
Ediția:2nd enlarged ed. 1991
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Lower undergraduate

Cuprins

AG—Background Material From Algebraic Geometry.- §1. Some Topological Notions.- §2. Some Facts from Field Theory.- §3. Some Commutative Algebra.- §4. Sheaves.- §5. Affine K-Schemes, Prevarieties.- §6. Products; Varieties.- §7. Projective and Complete Varieties.- §8. Rational Functions; Dominant Morphisms.- §9. Dimension.- §10. Images and Fibres of a Morphism.- §11. k-structures on K-Schemes.- §12. k-Structures on Varieties.- §13. Separable points.- §14. Galois Criteria for Rationality.- §15. Derivations and Differentials.- §16. Tangent Spaces.- §17. Simple Points.- §18. Normal Varieties.- References.- I—General Notions Associated With Algebraic Groups.- §1. The Notion of an Algebraic Groups.- §2. Group Closure; Solvable and Nilpotent Groups.- §3. The Lie Algebra of an Algebraic Group.- §4. Jordan Decomposition.- II — Homogeneous Spaces.- §5. Semi-Invariants.- §6. Homogeneous Spaces.- §7. Algebraic Groups in Characteristic Zero.- III Solvable Groups.- §8. Diagonalizable Groups and Tori.- §9. Conjugacy Classes and Centralizers of Semi-Simple Elements.- §10. Connected Solvable Groups.- IV—Borel Subgroups; Reductive Groups.- §11. Borel Subgroups.- §12. Cartan Subgroups; Regular Elements.- §13. The Borel Subgroups Containing a Given Torus.- §14. Root Systems and Bruhat Decomposition in Reductive Groups.- V—Rationality Questions.- §15. Split Solvable Groups and Subgroups.- §16. Groups over Finite Fields.- §17. Quotient of a Group by a Lie Subalgebra.- §18. Cartan Subgroups over the Groundfield. Unirationality. Splitting of Reductive Groups.- §19. Cartan Subgroups of Solvable Groups.- §20. Isotropic Reductive Groups.- §21. Relative Root System and Bruhat Decomposition for Isotropic Reductive Groups.- §22. Central Isogenies.- §23. Examples.- §24. Survey of Some Other Topics.- A. Classification.- B. Linear Representations.- C. Real Reductive Groups.- References for Chapters I to V.- Index of Definition.- Index of Notation.

Caracteristici

Reprint of a successful expanded edition of a well-received book
Presents foundational material on algebraic groups, Lie algebras, transformation spaces, and quotient spaces
Requires only some familiarity with algebraic geometry