Cantitate/Preț
Produs

Representation Theory of Algebraic Groups and Quantum Groups: Progress in Mathematics, cartea 284

Editat de Akihiko Gyoja, Hiraku Nakajima, Ken-ichi Shinoda, Toshiaki Shoji, Toshiyuki Tanisaki
en Limba Engleză Hardback – 3 dec 2010

Din seria Progress in Mathematics

Preț: 65004 lei

Preț vechi: 76476 lei
-15% Nou

Puncte Express: 975

Preț estimativ în valută:
12440 12971$ 10339£

Carte tipărită la comandă

Livrare economică 20 martie-03 aprilie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780817646967
ISBN-10: 0817646965
Pagini: 348
Ilustrații: XIII, 348 p. 10 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.69 kg
Ediția:2010
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics

Locul publicării:Boston, MA, United States

Public țintă

Research

Cuprins

Quotient Categories of Modular Representations.- Dipper–James–Murphy’s Conjecture for Hecke Algebras of Type Bn.- On Domino Insertion and Kazhdan–Lusztig Cells in Type Bn.- Runner Removal Morita Equivalences.- Quantum q-Schur Algebras and Their Infinite/Infinitesimal Counterparts.- Cherednik Algebras for Algebraic Curves.- A Temperley–Lieb Analogue for the BMW Algebra.- Graded Lie Algebras and Intersection Cohomology.- Crystal Base Elements of an ExtremalWeight Module Fixed by a Diagram Automorphism II: Case of Affine Lie Algebras.- t-Analogs of q-Characters of Quantum Affine Algebras of Type E6, E7, E8.- Ultra-Discretization of the affine G_2 Geometric Crystals to Perfect Crystals.- On Hecke Algebras Associated with Elliptic Root Systems.- Green’s Formula with ?*-Action and Caldero–Keller’s Formula for Cluster Algebras.

Textul de pe ultima copertă

This volume contains invited articles by top-notch experts who focus on such topics as: modular representations of algebraic groups, representations of quantum groups and crystal bases, representations of affine Lie algebras, representations of affine Hecke algebras, modular or ordinary representations of finite reductive groups, and representations of complex reflection groups and associated Hecke algebras.

Representation Theory of Algebraic Groups and Quantum Groups is intended for graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics.

Contributors:

H. H. Andersen, S. Ariki, C. Bonnafé, J. Chuang, J. Du, M. Finkelberg, Q. Fu, M. Geck, V. Ginzburg, A. Hida, L. Iancu, N. Jacon, T. Lam, G.I. Lehrer, G. Lusztig, H. Miyachi, S. Naito, H. Nakajima, T. Nakashima, D. Sagaki, Y. Saito, M. Shiota, J. Xiao, F. Xu, R. B. Zhang

Caracteristici

Invited articles by top-notch experts Focus is on topics in representation theory of algebraic groups and quantum groups Of interest to graduate students and researchers in representation theory, group theory, algebraic geometry, quantum theory and math physics Includes supplementary material: sn.pub/extras