Computational Micromagnetism: Advances in Numerical Mathematics
Autor Andreas Prohlen Limba Engleză Paperback – 11 dec 2001
Din seria Advances in Numerical Mathematics
- 20% Preț: 647.61 lei
- Preț: 229.49 lei
- Preț: 319.21 lei
- Preț: 256.43 lei
- Preț: 361.50 lei
- Preț: 487.37 lei
- Preț: 391.61 lei
- Preț: 424.05 lei
- Preț: 383.50 lei
- Preț: 379.48 lei
Preț: 392.37 lei
Nou
Puncte Express: 589
Preț estimativ în valută:
75.10€ • 77.39$ • 63.40£
75.10€ • 77.39$ • 63.40£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783519003588
ISBN-10: 3519003589
Pagini: 324
Ilustrații: XVIII, 304 p. 93 illus.
Dimensiuni: 170 x 244 x 17 mm
Greutate: 0.52 kg
Ediția:2001
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in Numerical Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3519003589
Pagini: 324
Ilustrații: XVIII, 304 p. 93 illus.
Dimensiuni: 170 x 244 x 17 mm
Greutate: 0.52 kg
Ediția:2001
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in Numerical Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
ResearchCuprins
I Numerical Stationary Micromagnetism.- 1 Direct Minimization.- 2 Convexified Micromagnetism.- 3 Relaxed Micromagnetism using Young Measures.- II Numerical Nonstationary Micromagnetism.- 4 The Landau-Lifshitz-Gilbert Equation.- 5 The Maxwell-Landau-Lifshitz-Gilbert Equations.- 6 Nematic Liquid Crystals.- 7 Summary and Outlook.
Notă biografică
Dr. Andreas Prohl, Universität Kiel
Textul de pe ultima copertă
Ferromagnetic materials are widely used as recording media.
Their magnetic patterns are described by the well-accepted model of Landau and Lifshitz. Over the last years, different strategies habe been developed to tackle the related non-convex minimization problem: direct minimization, convexification, and relaxation by using Young measures. Nonstationary effects are considered in the extended models of Landau, Lifshitz and Gilbert for (electrically conducting) ferromagnets.
The objective of this monograph is a numerical analysis of these models. Part I discusses convergence behavior of different finite element schemes for solving the stationary problem. Part II deals with numerical analyses of different penalization / projection strategies in nonstationary micromagnetism; it closes with a chapter on nematic liquid crystals to show applicability of these new methods to further applications.
Their magnetic patterns are described by the well-accepted model of Landau and Lifshitz. Over the last years, different strategies habe been developed to tackle the related non-convex minimization problem: direct minimization, convexification, and relaxation by using Young measures. Nonstationary effects are considered in the extended models of Landau, Lifshitz and Gilbert for (electrically conducting) ferromagnets.
The objective of this monograph is a numerical analysis of these models. Part I discusses convergence behavior of different finite element schemes for solving the stationary problem. Part II deals with numerical analyses of different penalization / projection strategies in nonstationary micromagnetism; it closes with a chapter on nematic liquid crystals to show applicability of these new methods to further applications.
Caracteristici
A numerical analysis