Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations: Advances in Numerical Mathematics
Cu Andreas Prohlen Limba Engleză Paperback – 1997
Din seria Advances in Numerical Mathematics
- 20% Preț: 634.50 lei
- Preț: 229.49 lei
- Preț: 312.82 lei
- Preț: 251.20 lei
- Preț: 354.24 lei
- Preț: 477.55 lei
- Preț: 415.53 lei
- Preț: 375.81 lei
- Preț: 384.49 lei
- Preț: 371.85 lei
Preț: 383.74 lei
Nou
Puncte Express: 576
Preț estimativ în valută:
73.45€ • 77.02$ • 60.69£
73.45€ • 77.02$ • 60.69£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783519027232
ISBN-10: 3519027232
Pagini: 312
Ilustrații: XIV, 294 p. 29 illus.
Dimensiuni: 170 x 244 x 16 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in Numerical Mathematics
Locul publicării:Wiesbaden, Germany
ISBN-10: 3519027232
Pagini: 312
Ilustrații: XIV, 294 p. 29 illus.
Dimensiuni: 170 x 244 x 16 mm
Greutate: 0.5 kg
Ediția:1997
Editura: Vieweg+Teubner Verlag
Colecția Vieweg+Teubner Verlag
Seria Advances in Numerical Mathematics
Locul publicării:Wiesbaden, Germany
Public țintă
Upper undergraduateCuprins
Preliminaries.- Stationary Quasi-Compressibility Methods: The Penalty Method and the Pressure Stabilization Method.- Nonstationary Quasi-Compressibility Methods.- Mixed Quasi-Compressibility Methods.- The Projection Scheme of Chorin.- The Projection Scheme of Van Kan.- Two Modified Chorin Schemes.- Multi-Component Schemes.- Time Discretization on Time-Grids with Structure — from Euler and Trapezoidal Method to Revised Projection Schemes.- Summary and Outlook.
Textul de pe ultima copertă
Projection methods had been introduced in the late sixties by A. Chorin and R. Teman to decouple the computation of velocity and pressure within the time-stepping for solving the nonstationary Navier-Stokes equations. Despite the good performance of projection methods in practical computations, their success remained somewhat mysterious as the operator splitting implicitly introduces a nonphysical boundary condition for the pressure. The objectives of this monograph are twofold. First, a rigorous error analysis is presented for existing projection methods by means of relating them to so-called quasi-compressibility methods (e.g. penalty method, pressure stabilzation method, etc.). This approach highlights the intrinsic error mechanisms of these schemes and explains the reasons for their limitations. Then, in the second part, more sophisticated new schemes are constructed and analyzed which are exempted from most of the deficiencies of the classical projection and quasi-compressibility methods. "... this book should be mandatory reading for applied mathematicians specializing in computational fluid dynamics." J.-L.Guermond. Mathematical Reviews, Ann Arbor