Concise Computer Vision: An Introduction into Theory and Algorithms: Undergraduate Topics in Computer Science
Autor Reinhard Kletteen Limba Engleză Paperback – 20 ian 2014
Din seria Undergraduate Topics in Computer Science
- 20% Preț: 280.92 lei
- 20% Preț: 233.75 lei
- 20% Preț: 350.89 lei
- 20% Preț: 245.43 lei
- 20% Preț: 187.22 lei
- 20% Preț: 316.24 lei
- 20% Preț: 287.22 lei
- 20% Preț: 306.71 lei
- 20% Preț: 258.78 lei
- 20% Preț: 226.64 lei
- 20% Preț: 179.87 lei
- 20% Preț: 395.04 lei
- 20% Preț: 272.43 lei
- 20% Preț: 305.01 lei
- 20% Preț: 306.58 lei
- 20% Preț: 192.73 lei
- Preț: 334.88 lei
- 20% Preț: 341.95 lei
- 20% Preț: 342.45 lei
- 20% Preț: 305.61 lei
- 20% Preț: 225.02 lei
- 20% Preț: 276.82 lei
- 20% Preț: 375.53 lei
- 20% Preț: 254.37 lei
- 20% Preț: 237.35 lei
- 20% Preț: 374.37 lei
- 20% Preț: 307.16 lei
- 20% Preț: 374.20 lei
- 20% Preț: 246.39 lei
- 20% Preț: 237.62 lei
- 20% Preț: 463.43 lei
- 20% Preț: 297.28 lei
- 20% Preț: 227.15 lei
- 20% Preț: 304.44 lei
- 20% Preț: 579.37 lei
- 20% Preț: 298.18 lei
- 20% Preț: 302.80 lei
- 20% Preț: 300.89 lei
- 20% Preț: 191.35 lei
- 20% Preț: 243.35 lei
- 20% Preț: 297.66 lei
- 20% Preț: 278.10 lei
- 20% Preț: 389.96 lei
- 20% Preț: 184.28 lei
- 20% Preț: 304.21 lei
- 20% Preț: 281.40 lei
- 20% Preț: 754.32 lei
Preț: 369.61 lei
Preț vechi: 462.01 lei
-20% Nou
Puncte Express: 554
Preț estimativ în valută:
70.73€ • 72.97$ • 59.87£
70.73€ • 72.97$ • 59.87£
Carte tipărită la comandă
Livrare economică 04-18 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781447163190
ISBN-10: 1447163192
Pagini: 429
Ilustrații: XVIII, 429 p. 298 illus., 229 illus. in color.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.66 kg
Ediția:2014
Editura: SPRINGER LONDON
Colecția Springer
Seria Undergraduate Topics in Computer Science
Locul publicării:London, United Kingdom
ISBN-10: 1447163192
Pagini: 429
Ilustrații: XVIII, 429 p. 298 illus., 229 illus. in color.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.66 kg
Ediția:2014
Editura: SPRINGER LONDON
Colecția Springer
Seria Undergraduate Topics in Computer Science
Locul publicării:London, United Kingdom
Public țintă
Upper undergraduateCuprins
1: Image Data.- 2: Image Processing.- 3: Image Analysis.- 4: Dense Motion Analysis.- 5: Image Segmentation.- 6: Cameras, Coordinates and Calibration.- 7: 3D Shape Reconstruction.- 8: Stereo Matching.- 9: Feature Detection and Tracking.- 10: Object Detection.
Notă biografică
Dr. Reinhard Klette, FRSNZ, is a Professor at the Tamaki Innovation Campus of The University of Auckland, New Zealand. His numerous other publications include the Springer title Euclidean Shortest Paths: Exact or Approximate Algorithms.
Textul de pe ultima copertă
Many textbooks on computer vision can be unwieldy and intimidating in their coverage of this extensive discipline. This textbook addresses the need for a concise overview of the fundamentals of this field.
Concise Computer Vision provides an accessible general introduction to the essential topics in computer vision, highlighting the role of important algorithms and mathematical concepts. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter.
Topics and features:
Concise Computer Vision provides an accessible general introduction to the essential topics in computer vision, highlighting the role of important algorithms and mathematical concepts. Classroom-tested programming exercises and review questions are also supplied at the end of each chapter.
Topics and features:
- Provides an introduction to the basic notation and mathematical concepts for describing an image, and the key concepts for mapping an image into an image
- Explains the topologic and geometric basics for analysing image regions and distributions of image values, and discusses identifying patterns in an image
- Introduces optic flow for representing dense motion, and such topics in sparse motion analysis as keypoint detection and descriptor definition, and feature tracking using the Kalman filter
- Describes special approaches for image binarization and segmentation of still images or video frames
- Examines the three basic components of a computer vision system, namely camera geometry and photometry, coordinate systems, and camera calibration
- Reviews different techniques for vision-based 3D shape reconstruction, including the use of structured lighting, stereo vision, and shading-based shape understanding
- Includes a discussion of stereo matchers, and the phase-congruency model for image features
- Presents an introduction into classification and learning, with a detailed description of basic AdaBoost and the use of random forests
Caracteristici
Presents an accessible general introduction to the essential topics in computer vision Provides classroom-tested programming exercises and review questions at the end of each chapter Includes supporting information on historical context, suggestions for further reading and hints on mathematical subjects under discussion Includes supplementary material: sn.pub/extras