Constructible Sets in Real Geometry: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 33
Autor Carlos Andradas, Ludwig Bröcker, Jesus M. Ruizen Limba Engleză Paperback – 14 dec 2011
Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
- 20% Preț: 1002.37 lei
- 20% Preț: 1029.55 lei
- Preț: 367.32 lei
- Preț: 389.31 lei
- 18% Preț: 1413.31 lei
- 15% Preț: 651.34 lei
- 18% Preț: 731.28 lei
- 18% Preț: 783.68 lei
- 24% Preț: 679.42 lei
- 18% Preț: 1228.47 lei
- 18% Preț: 788.90 lei
- 18% Preț: 905.36 lei
- Preț: 388.52 lei
- Preț: 386.99 lei
- 18% Preț: 1121.62 lei
- 18% Preț: 897.95 lei
- Preț: 397.38 lei
- 18% Preț: 911.06 lei
- 15% Preț: 638.57 lei
- 18% Preț: 1234.32 lei
- 18% Preț: 793.76 lei
- Preț: 394.12 lei
- Preț: 491.01 lei
- 18% Preț: 782.87 lei
- Preț: 393.90 lei
- 18% Preț: 1115.77 lei
- 18% Preț: 945.79 lei
- 18% Preț: 1120.99 lei
- 18% Preț: 1407.64 lei
- 18% Preț: 1243.60 lei
- 18% Preț: 804.54 lei
- 18% Preț: 1115.14 lei
- 15% Preț: 700.29 lei
- 18% Preț: 1116.26 lei
- 15% Preț: 655.78 lei
- 18% Preț: 1118.75 lei
Preț: 526.83 lei
Preț vechi: 619.79 lei
-15% Nou
Puncte Express: 790
Preț estimativ în valută:
100.85€ • 103.78$ • 85.02£
100.85€ • 103.78$ • 85.02£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642800269
ISBN-10: 3642800262
Pagini: 284
Ilustrații: IX, 270 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642800262
Pagini: 284
Ilustrații: IX, 270 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.4 kg
Ediția:Softcover reprint of the original 1st ed. 1996
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. A First Look at Semialgebraic Geometry.- 1. Real Closed Fields and Transfer Principles.- 2. What is Semialgebraic Geometry?.- 3. Real Spaces.- 4. Examples.- II. Real Algebra.- 1. The Real Spectrum of a Ring.- 2. Specializations, Zero Sets and Real Ideals.- 3. Real Valuations.- 4. Real Going-Up and Real Going-Down.- 5. Abstract Semialgebraic Functions.- 6. Cylindrical Decomposition.- 7. Real Strict Localization.- Notes.- III. Spaces of Signs.- 1. The Axioms.- 2. Forms.- 3. SAP-Spaces and Fans.- 4. Local Spaces of Signs.- 5. The Space of Signs of a Ring.- 6. Subspaces.- Notes.- IV. Spaces of Orderings.- 1. The Axioms Revisited.- 2. Basic Constructions.- 3. Spaces of Finite Type.- 4. Spaces of Finite Chain Length.- 5. Finite Type = Finite Chain Length.- 6. Local-Global Principles.- 7. Representation Theorem and Invariants.- Notes.- V. The Main Results.- 1. Stability Formulae.- 2. Complexity of Constructible Sets.- 3. Separation.- 4. Real Divisors.- 5. The Artin-Lang Property.- Notes.- VI. Spaces of Signs of Rings.- 1. Fans and Valuations.- 2. Field Extensions: Upper Bounds.- 3. Field Extensions: Lower Bounds.- 4. Algebras.- 5. Algebras Finitely Generated over Fields.- 6. Archimedean Rings.- 7. Coming Back to Geometry.- Notes.- VII. Real Algebra of Excellent Rings.- 1. Regular Homomorphisms.- 2. Excellent Rings.- 3. Extension of Orderings Under Completion.- 4. Curve Selection Lemma.- 5. Dimension, Valuations and Fans.- 6. Closures of Constructible Sets.- 7. Real Going-down for Regular Homomorphisms.- 8. Connected Components of Constructible Sets.- Notes.- VIII. Real Analytic Geometry.- 1. Semianalytic Sets.- 2. Semianalytic Set Germs.- 3. Cylindrical Decomposition of Germs.- 4. Rings of Global Analytic Functions.- 5. Hilbert’s 17th Problem and Real Nullstellensatz.- 6.Minimal Generation of Global Semianalytic Sets.- 7. Topology of Global Semianalytic Sets.- 8. Germs at Compact Sets.- Notes.