Discrete Subgroups of Semisimple Lie Groups: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 17
Autor Gregori A. Margulisen Limba Engleză Paperback – 19 oct 2010
Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
- 20% Preț: 1002.37 lei
- 20% Preț: 1029.55 lei
- Preț: 367.32 lei
- Preț: 389.31 lei
- 18% Preț: 1413.31 lei
- 15% Preț: 651.34 lei
- 18% Preț: 731.28 lei
- 18% Preț: 783.68 lei
- 24% Preț: 679.42 lei
- 18% Preț: 1228.47 lei
- 18% Preț: 905.36 lei
- Preț: 388.52 lei
- Preț: 386.99 lei
- 18% Preț: 1121.62 lei
- 18% Preț: 897.95 lei
- Preț: 397.38 lei
- 18% Preț: 911.06 lei
- 15% Preț: 638.57 lei
- 18% Preț: 1234.32 lei
- 18% Preț: 793.76 lei
- Preț: 394.12 lei
- Preț: 491.01 lei
- 18% Preț: 782.87 lei
- Preț: 393.90 lei
- 18% Preț: 1115.77 lei
- 15% Preț: 526.83 lei
- 18% Preț: 945.79 lei
- 18% Preț: 1120.99 lei
- 18% Preț: 1407.64 lei
- 18% Preț: 1243.60 lei
- 18% Preț: 804.54 lei
- 18% Preț: 1115.14 lei
- 15% Preț: 700.29 lei
- 18% Preț: 1116.26 lei
- 15% Preț: 655.78 lei
- 18% Preț: 1118.75 lei
Preț: 788.90 lei
Preț vechi: 962.06 lei
-18% Nou
Puncte Express: 1183
Preț estimativ în valută:
150.95€ • 157.61$ • 124.93£
150.95€ • 157.61$ • 124.93£
Carte tipărită la comandă
Livrare economică 05-19 aprilie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783642057212
ISBN-10: 3642057217
Pagini: 404
Ilustrații: IX, 390 p.
Dimensiuni: 170 x 242 x 21 mm
Greutate: 0.64 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3642057217
Pagini: 404
Ilustrații: IX, 390 p.
Dimensiuni: 170 x 242 x 21 mm
Greutate: 0.64 kg
Ediția:1991
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
1. Statement of Main Results.- 2. Synopsis of the Chapters.- 3. Remarks on the Structure of the Book, References and Notation.- 1. Preliminaries.- 0. Notation, Terminology and Some Basic Facts.- 1. Algebraic Groups Over Arbitrary Fields.- 2. Algebraic Groups Over Local Fields.- 3. Arithmetic Groups.- 4. Measure Theory and Ergodic Theory.- 5. Unitary Representations and Amenable Groups.- II. Density and Ergodicity Theorems.- 1. Iterations of Linear Transformations.- 2. Density Theorems for Subgroups with Property (S)I.- 3. The Generalized Mautner Lemma and the Lebesgue Spectrum.- 4. Density Theorems for Subgroups with Property (S)II.- 5. Non-Discrete Closed Subgroups of Finite Covolume.- 6. Density of Projections and the Strong Approximation Theorem.- 7. Ergodicity of Actions on Quotient Spaces.- III. Property (T).- 1. Representations Which Are Isolated from the Trivial One-Dimensional Representation.- 2. Property (T) and Some of Its Consequences. Relationship Between Property (T) for Groups and for Their Subgroups.- 3. Property (T) and Decompositions of Groups into Amalgams.- 4. Property (R).- 5. Semisimple Groups with Property (T).- 6. Relationship Between the Structure of Closed Subgroups and Property (T) of Normal Subgroups.- IV. Factor Groups of Discrete Subgroups.- 1. b-metrics, Vitali’s Covering Theorem and the Density Point Theorem.- 2. Invariant Algebras of Measurable Sets.- 3. Amenable Factor Groups of Lattices Lying in Direct Products.- 4. Finiteness of Factor Groups of Discrete Subgroups.- V. Characteristic Maps.- 1. Auxiliary Assertions.- 2. The Multiplicative Ergodic Theorem.- 3. Definition and Fundamental Properties of Characteristic Maps.- 4. Effective Pairs.- 5. Essential Pairs.- VI. Discrete Subgroups and Boundary Theory.- 1. Proximal G-Spaces and Boundaries.- 2. ?-Boundaries.- 3. Projective G-Spaces.- 4. Equivariant Measurable Maps to Algebraic Varieties.- VII. Rigidity.- 1. Auxiliary Assertions.- 2. Cocycles on G-Spaces.- 3. Finite-Dimensional Invariant Subspaces.- 4. Equivariant Measurable Maps and Continuous Extensions of Representations.- 5. Superrigidity (Continuous Extensions of Homomorphisms of Discrete Subgroups to Algebraic Groups Over Local Fields).- 6. Homomorphisms of Discrete Subgroups to Algebraic Groups Over Arbitrary Fields.- 7. Strong Rigidity (Continuous Extensions of Isomorphisms of Discrete Subgroups).- 8. Rigidity of Ergodic Actions of Semisimple Groups.- VIII. Normal Subgroups and “Abstract” Homomorphisms of Semisimple Algebraic Groups Over Global Fields.- 1. Some Properties of Fundamental Domains for S-Arithmetic Subgroups.- 2. Finiteness of Factor Groups of S-Arithmetic Subgroups.- 3. Homomorphisms of S-Arithmetic Subgroups to Algebraic Groups.- IX. Arithmeticity.- 1. Statement of the Arithmeticity Theorems.- 2. Proof of the Arithmeticity Theorems.- 3. Finite Generation of Lattices.- 4. Consequences of the Arithmeticity Theorems I.- 5. Consequences of the Arithmeticity Theorems II.- 6. Arithmeticity, Volume of Quotient Spaces, Finiteness of Factor Groups, and Superrigidity of Lattices in Semisimple Lie Groups.- 7. Applications to the Theory of Symmetric Spaces and Theory of Complex Manifolds.- Appendices.- A. Proof of the Multiplicative Ergodic Theorem.- B. Free Discrete Subgroups of Linear Groups.- C. Examples of Non-Arithmetic Lattices.- Historical and Bibliographical Notes.- References.