Cantitate/Preț
Produs

Quasiregular Mappings: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 26

Autor Seppo Rickman
en Limba Engleză Paperback – 30 dec 2011
Quasiregular Mappings extend quasiconformal theory to thenoninjective case.They give a natural and beautifulgeneralization of the geometric aspects ofthe theory ofanalytic functions of one complex variable to Euclideann-space or, more generally, to Riemannian n-manifolds. Thisbook is a self-contained exposition of the subject. A braodspectrum of results of both analytic and geometric characterare presented, and the methods vary accordingly. The maintools are the variational integral method and the extremallength method, both of which are thoroughly developed here.Reshetnyak's basic theorem on discreteness and openness isused from the beginning, but the proof by means ofvariational integrals is postponed until near the end. Thus,the method of extremal length is being used at an earlystage and leads, among other things, to geometric proofs ofPicard-type theorems and a defect relation, which are someof the high points of the present book.
Citește tot Restrânge

Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Preț: 63857 lei

Preț vechi: 75125 lei
-15% Nou

Puncte Express: 958

Preț estimativ în valută:
12222 12712$ 10242£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642782039
ISBN-10: 3642782035
Pagini: 228
Ilustrații: X, 213 p.
Dimensiuni: 170 x 242 x 12 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1993
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. Basic Properties of Quasiregular Mappings.- 1. ACLp Mappings.- 2. Quasiregular Mappings.- 3. Examples.- 4. Discrete Open Mappings.- II. Inequalities for Moduli of Path Families.- 1. Modulus of a Path Family.- 2. The KO-Inequality.- 3. Path Lifting.- 4. Linear Dilatations.- 5. Poletski?’s Lemma.- 6. Characterizations of Quasiregularity.- 7. Proof of Poletski?’s Lemma.- 8. Poletski?’s Inequality.- 9. Väisälä’s Inequality.- 10. Capacity Inequalities.- III. Applications of Modulus Inequalities.- 1. Global Distortion.- 2. Sets of Capacity Zero and Singularities.- 3. The Injectivity Radius of a Local Homeomorphism.- 4. Local Distortion.- 5. Bounds for the Local Index.- IV. Mappings into the n-Sphere with Punctures.- 1. Coverings Averages.- 2. The Analogue of Picard’s Theorem.- 3. Mappings of a Ball.- V. Value Distribution.- 1. Defect Relation.- 2. Coverings and Decomposition of Balls.- 3. Estimates on Liftings.- 4. Extremal Maximal Sequences of Liftings.- 5. Effect of the Defect Sum on the Liftings.- 6. Completion of the Proof of Defect Relations.- 7. Mappings of the Plane.- 8. Order of Growth.- 9. Further Results.- VI. Variational Integrals and Quasiregular Mappings.- 1. Extremals of Variational Integrals.- 2. Extremals and Quasiregular Mappings.- 3. Growth Estimates for Extremals.- 4. Differentiability of Quasiregular Mappings.- 5. Discreteness and Openness of Quasiregular Mappings.- 6. Pullbacks of General Kernels.- 7. Further Properties of Extremals.- 8. The Limit Theorem.- VII. Boundary Behavior.- 1. Removability.- 2. Asymptotic and Radial Limits.- 3. Continuity Results and the Reflection Principle.- 4. The Wiener Condition.- 5. F-Harmonic Measure.- 6. Phragmén-Lindelöf Type Theorems.- 7. Asymptotic Values.- List of Symbols.