Cantitate/Preț
Produs

Weil Conjectures, Perverse Sheaves and ℓ-adic Fourier Transform: Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, cartea 42

Autor Reinhardt Kiehl, Rainer Weissauer
en Limba Engleză Hardback – 14 aug 2001
In this book the authors describe the important generalization of the original Weil conjectures, as given by P. Deligne in his fundamental paper "La conjecture de Weil II". The authors follow the important and beautiful methods of Laumon and Brylinski which lead to a simplification of Deligne's theory. Deligne's work is closely related to the sheaf theoretic theory of perverse sheaves. In this framework Deligne's results on global weights and his notion of purity of complexes obtain a satisfactory and final form. Therefore the authors include the complete theory of middle perverse sheaves. In this part, the l-adic Fourier transform is introduced as a technique providing natural and simple proofs. To round things off, there are three chapters with significant applications of these theories.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 111215 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 19 oct 2010 111215 lei  6-8 săpt.
Hardback (1) 111875 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 14 aug 2001 111875 lei  6-8 săpt.

Din seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Preț: 111875 lei

Preț vechi: 136434 lei
-18% Nou

Puncte Express: 1678

Preț estimativ în valută:
21410 22088$ 18120£

Carte tipărită la comandă

Livrare economică 04-18 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783540414575
ISBN-10: 3540414576
Pagini: 396
Ilustrații: XII, 375 p.
Dimensiuni: 155 x 235 x 27 mm
Greutate: 0.73 kg
Ediția:2001
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

I. The General Weil Conjectures (Deligne’s Theory of Weights).- II. The Formalism of Derived Categories.- III. Perverse Sheaves.- IV. Lefschetz Theory and the Brylinski—Radon Transform.- V. Trigonometric Sums.- VI. The Springer Representations.- B. Bertini Theorem for Etale Sheaves.- C. Kummer Extensions.- D. Finiteness Theorems.

Caracteristici

Describes the important generalisation of the original Weil conjectures For the first time the authors describe Deligne's work in the framework of the sheaf theoretic theory of perverse sheaves The l-adic Fourier transform is introduced as a powerful tool Presents important applications Includes supplementary material: sn.pub/extras