Cantitate/Preț
Produs

Controlling Chaos: Suppression, Synchronization and Chaotification: Communications and Control Engineering

Autor Huaguang Zhang, Derong Liu, Zhiliang Wang
en Limba Engleză Paperback – 21 dec 2011
Controlling Chaos achieves three goals: the suppression, synchronisation and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit and with less celebrated novel systems. Modelling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed. Time-delayed systems are also studied. The results presented are general for a broad class of chaotic systems.
This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 92864 lei  43-57 zile
  SPRINGER LONDON – 21 dec 2011 92864 lei  43-57 zile
Hardback (1) 93450 lei  43-57 zile
  SPRINGER LONDON – 27 iul 2009 93450 lei  43-57 zile

Din seria Communications and Control Engineering

Preț: 92864 lei

Preț vechi: 113249 lei
-18% Nou

Puncte Express: 1393

Preț estimativ în valută:
17772 18461$ 14762£

Carte tipărită la comandă

Livrare economică 03-17 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781447122821
ISBN-10: 1447122828
Pagini: 364
Ilustrații: XX, 344 p. 178 illus.
Dimensiuni: 155 x 235 x 19 mm
Greutate: 0.51 kg
Ediția:2009
Editura: SPRINGER LONDON
Colecția Springer
Seria Communications and Control Engineering

Locul publicării:London, United Kingdom

Public țintă

Research

Cuprins

Overview.- Preliminaries of Nonlinear Dynamics and Chaos.- Entrainment and Migration Control of Chaotic Systems.- Feedback Control of Chaotic Systems.- Synchronizing Chaotic Systems Based on Feedback Control.- Synchronizing Chaotic Systems via Impulsive Control.- Synchronization of Chaotic Systems with Time Delay.- Synchronizing Chaotic Systems Based on Fuzzy Models.- Chaotification of Nonchaotic Systems.

Recenzii

From the reviews:
“In this book the authors present state-of-the-art techniques for active control and synchronization of chaotic systems. … the book is written in a clear and concise fashion and each chapter contains a list of up-to-date references. … The book should be valuable to graduate students and faculty in engineering, or to applied mathematicians and physicists interested in the field of nonlinear dynamics and control theory. … It is recommended for individuals as well as libraries.” (Subhash C. Sinha, International Journal of Acoustics and Vibration, Vol. 16 (1), 2011)

Textul de pe ultima copertă

Controlling Chaos offers its reader an extensive selection of techniques to achieve three goals: the suppression, synchronization and generation of chaos, each of which is the focus of a separate part of the book. The text deals with the well-known Lorenz, Rössler and Hénon attractors and the Chua circuit, and with less celebrated novel systems. Modeling of chaos is accomplished using difference equations and ordinary and time-delayed differential equations. The methods directed at controlling chaos benefit from the influence of advanced nonlinear control theory: inverse optimal control is used for stabilization; exact linearization for synchronization; and impulsive control for chaotification. Notably, a fusion of chaos and fuzzy systems theories is employed, with the Takagi–Sugeno model and the authors’ own fuzzy hyperbolic model utilized in the modeling and control of chaotic systems. Time-delayed systems are also studied with many synchronization methods being explored. All the results presented are general for a broad class of chaotic systems.
This monograph is self-contained with introductory material providing a review of the history of chaos control and the necessary mathematical preliminaries for working with dynamical systems.
Controlling Chaos will be of interest to academics from electrical, systems, mechanical and chemical engineering backgrounds working in control theory related to nonlinear dynamical and chaotic systems and to graduate students of chaos control.
 
The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.

Caracteristici

Unifies chaos theory with fuzzy systems theory for more effective control of chaotic systems Presents the latest results on chaotification of linear systems Presents novel advanced control methods for applications to chaotic and nonlinear systems Includes supplementary material: sn.pub/extras