Cantitate/Preț
Produs

Nonlinear Model Predictive Control: Theory and Algorithms: Communications and Control Engineering

Autor Lars Grüne, Jürgen Pannek
en Limba Engleză Hardback – 10 apr 2011
Nonlinear Model Predictive Control is a thorough and rigorous introduction to nonlinear model predictive control (NMPC) for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine – the core of any NMPC controller – works. An appendix covering NMPC software and accompanying software in MATLAB® and C++(downloadable from www.springer.com/ISBN) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 59613 lei  38-44 zile
  Springer International Publishing – 28 iun 2018 59613 lei  38-44 zile
Hardback (2) 66967 lei  38-44 zile
  Springer International Publishing – 22 noi 2016 66967 lei  38-44 zile
  SPRINGER LONDON – 10 apr 2011 100672 lei  6-8 săpt.

Din seria Communications and Control Engineering

Preț: 100672 lei

Preț vechi: 122770 lei
-18% Nou

Puncte Express: 1510

Preț estimativ în valută:
19265 19992$ 16103£

Carte tipărită la comandă

Livrare economică 15-29 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780857295002
ISBN-10: 0857295004
Pagini: 359
Ilustrații: XII, 360 p. With online files/update.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.64 kg
Ediția:2011
Editura: SPRINGER LONDON
Colecția Springer
Seria Communications and Control Engineering

Locul publicării:London, United Kingdom

Public țintă

Professional/practitioner

Cuprins

Introduction.- Discrete-time and Sampled-data Systems.- Nonlinear Model Predictive Control.- Infinite-horizon Optimal Control.- Stability and Suboptimality Using Stabilizing Constraints.- Stability and Suboptimality without Stabilizing Constraints.- Feasibility and Robustness.- Numerical Discretization.- Numerical Optimal Control of Nonlinear Systems.- Examples.- Appendix: Brief Introduction to NMPC Software.

Recenzii

“The book provides an excellent and extensive treatment of NMPC from a careful introduction to the underlying theory to advanced results. It can be used for independent reading by applied mathematicians, control theoreticians and engineers who desire a rigorous introduction into the NMPC theory. It can also be used as a textbook for a graduate-level university course in NMPC.” (Ilya Kolmanovsky, Mathematical Reviews, April, 2015)
“In the monograph nonlinear, discrete-time, finite-dimensional control systems with constant parameters are considered. … Each chapter of the monograph contains many numerical examples which illustrate the theoretical considerations, several possible extensions and open problems. Moreover, relationships to results on predictive control published in the literature are pointed out.” (Jerzy Klamka, Zentralblatt MATH, Vol. 1220, 2011)

Textul de pe ultima copertă

Nonlinear model predictive control (NMPC) is widely used in the process and chemical industries and increasingly for applications, such as those in the automotive industry, which use higher data sampling rates.
Nonlinear Model Predictive Control is a thorough and rigorous introduction to NMPC for discrete-time and sampled-data systems. NMPC is interpreted as an approximation of infinite-horizon optimal control so that important properties like closed-loop stability, inverse optimality and suboptimality can be derived in a uniform manner. These results are complemented by discussions of feasibility and robustness. NMPC schemes with and without stabilizing terminal constraints are detailed and intuitive examples illustrate the performance of different NMPC variants. An introduction to nonlinear optimal control algorithms gives insight into how the nonlinear optimisation routine – the core of any NMPC controller – works. An appendix covering NMPC software and accompanying software in MATLAB® and C++(downloadable from http://www.nmpc-book.com/ ) enables readers to perform computer experiments exploring the possibilities and limitations of NMPC.
Nonlinear Model Predictive Control is primarily aimed at academic researchers and practitioners working in control and optimisation but the text is self-contained featuring background material on infinite-horizon optimal control and Lyapunov stability theory which makes the book accessible to graduate students of control engineering and applied mathematics..

Caracteristici

Provides researchers with a self-contained reference for nonlinear model predictive control which can support further research Offers the student an up-to-date account of nonlinear model predictive control written in a textbook style for easier learning Gives the lecturer a sourcebook for teaching nonlinear model predictive control without needing to work up material from papers and contributed books Includes supplementary material: sn.pub/extras

Notă biografică

Lars Grüne has been Professor for Applied Mathematics at the University of Bayreuth, Germany, since 2002 and head of the Chair of Applied Mathematics since 2009. He received his Diploma and Ph.D. in Mathematics in 1994 and 1996, respectively, from the University of Augsburg and his habilitation from the J.W. Goethe University in Frankfurt/M in 2001. He held visiting positions at the Universities of Rome ‘La Sapienza’ (Italy), Padova (Italy), Melbourne (Australia), Paris IX — Dauphine (France) and Newcastle (Australia). Professor Grüne is Editor-in-Chief of the journal Mathematics of Control, Signals and Systems (MCSS), Associate Editor for the Journal of Optimization Theory and Applications (JOTA) and the Journal of Applied Mathematica and Mechanics (ZAMM) and member of the Managing Board of the GAMM — International Association of Applied Mathematics and Mechanics. Professor Grüne co-authored four books, more than 100 papers and chapters in peer reviewed journals and books and more than 80 articles in conference proceedings. He is member of the steering committee of the International Symposium on Mathematical Theory of Networks and Systems (MTNS) and member of the Program Comittees of various other conferences, including IFAC-NOLCOS symposia, the European Control Conference and the IEEE Conference on Decision and Control. In 2012, Professor Grüne was awarded the Excellence in Teaching Award (“Preis für gute Lehre”) from the State of Bavaria. His research interests lie in the area of mathematical systems and control theory with a focus on numerical and optimization-based methods for stability analysis and stabilization of nonlinear systems. Jürgen Pannek has been Professor in the Department of Production Engineering at the University of Bremen (Germany) since 2014. He received his Diploma in Mathematical Economics and his Ph.D. in Mathematics from the University of Bayreuth in 2005 and 2009. He was visiting lecturer at the University of Birmingham (England) in 2008 and Curtin University of Perth (Australia) from 2010 to 2011. Thereafter, he worked as scientific assistant in the Department of Aerospace Engineering at the University of the Federal Armed Forces Munich (Germany). In his research, he focuses on the area of system and control theory from the application point of view regarding robotics, logistics and cyberphysical systems.