Cantitate/Preț
Produs

Coverings of Discrete Quasiperiodic Sets: Theory and Applications to Quasicrystals: Springer Tracts in Modern Physics, cartea 180

Editat de Peter Kramer, Zorka Papadopolos
en Limba Engleză Paperback – 6 dec 2010
Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new and fascinating perspective of order down to the atomic level. The authors develop concepts related to quasiperiodic coverings and describe results. Specific systems in 2 and 3 dimensions are described with many illustrations. The atomic positions in quasicrystals are analyzed.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 118811 lei  38-44 zile
  Springer Berlin, Heidelberg – 6 dec 2010 118811 lei  38-44 zile
Hardback (1) 138456 lei  6-8 săpt.
  Springer Berlin, Heidelberg – 18 sep 2002 138456 lei  6-8 săpt.

Din seria Springer Tracts in Modern Physics

Preț: 118811 lei

Preț vechi: 156329 lei
-24% Nou

Puncte Express: 1782

Preț estimativ în valută:
22738 23457$ 19244£

Carte tipărită la comandă

Livrare economică 01-07 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642077494
ISBN-10: 3642077498
Pagini: 296
Ilustrații: XV, 273 p.
Dimensiuni: 155 x 235 x 16 mm
Ediția:Softcover reprint of the original 1st ed. 2003
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Tracts in Modern Physics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Covering of Discrete Quasiperiodic Sets: Concepts and Theory.- Covering Clusters in Icosahedral Quasicrystals.- Generation of Quasiperiodic Order by Maximal Cluster Covering.- Voronoi and Delone Clusters in Dual Quasiperiodic Tilings.- The Efficiency of Delone Coverings of the Canonical Tilings ? *(a4) and ? *(d6).- Lines and Planes in 2- and 3-Dimensional Quasicrystals.- Thermally-Induced Tile Rearrangements in Decagonal Quasicrystals — Superlattice Ordering and Phason Fluctuation.- Tilings and Coverings of Quasicrystal Surfaces.

Textul de pe ultima copertă

Coverings are efficient ways to exhaust Euclidean N-space with congruent geometric objects. Discrete quasiperiodic systems are exemplified by the atomic structure of quasicrystals. The subject of coverings of discrete quasiperiodic sets emerged in 1995. The theory of these coverings provides a new and fascinating perspective of order down to the atomic level. The authors develop concepts related to quasiperiodic coverings and describe results. Specific systems in 2 and 3 dimensions are described with many illustrations. The atomic positions in quasicrystals are analyzed.

Caracteristici

Up-to-date review and guide to most recent literature Written by world experts in this area of research Includes supplementary material: sn.pub/extras