Cantitate/Preț
Produs

CRC Handbook of Tables for Order Statistics from Inverse Gaussian Distributions with Applications

Autor N. Balakrishnan, William Chen
en Limba Engleză Hardback – 30 iul 1997
First derived within the context of life-testing, inverse Gaussian distribution has become one of the most important and widely employed distributions, and is often used to model the lifetimes of components. It is also used as a model in many varied applications, including fatigue analysis, economic prediction analysis, and the analysis of extreme events such as rainfall and flood levels. The interesting features and properties of this distribution make it an important and realistic model in a variety of problems across numerous disciplines.
Because of the broad range of applications, this handbook will be useful not only to members of the statistical community but will also appeal to applied scientists, engineers, econometricians, and anyone who desires a thorough evaluation of this important topic.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 46103 lei  6-8 săpt.
  CRC Press – 13 dec 2019 46103 lei  6-8 săpt.
Hardback (1) 168863 lei  6-8 săpt.
  CRC Press – 30 iul 1997 168863 lei  6-8 săpt.

Preț: 168863 lei

Preț vechi: 205930 lei
-18% Nou

Puncte Express: 2533

Preț estimativ în valută:
32317 33453$ 27314£

Carte tipărită la comandă

Livrare economică 06-20 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780849331183
ISBN-10: 0849331188
Pagini: 704
Ilustrații: 611 Tables, black and white
Dimensiuni: 178 x 254 x 42 mm
Greutate: 1.46 kg
Ediția:1
Editura: CRC Press
Colecția CRC Press

Public țintă

Professional Practice & Development

Cuprins

Introduction. Inverse Gaussian Distribution and Properties. Order Statistics and Properties. Calculation of Moments and Tables. Illustrations of the Use of Tables. Applications. Bibliography. Tables. Indices.

Notă biografică

Balakrishnan\, N.; Chen\, William

Descriere

This book presents a study of order statistics from standard Inverse Gaussian distributions and their moments, and applies the moments of order statistics to derive the best linear unbiased estimators of the location and scale parameters based on complete as well as Type-II censored samples.