Data-Driven and Model-Based Methods for Fault Detection and Diagnosis
Autor Majdi Mansouri, Mohamed Faouzi Harkat, Hazem N. Nounou, Mohamed N. Nounouen Limba Engleză Paperback – 17 feb 2020
- Outlines latent variable based hypothesis testing fault detection techniques to enhance monitoring processes represented by linear or nonlinear input-space models (such as PCA) or input-output models (such as PLS)
- Explains multiscale latent variable based hypothesis testing fault detection techniques using multiscale representation to help deal with uncertainty in the data and minimize its effect on fault detection
- Includes interval PCA (IPCA) and interval PLS (IPLS) fault detection methods to enhance the quality of fault detection
- Provides model-based detection techniques for the improvement of monitoring processes using state estimation-based fault detection approaches
- Demonstrates the effectiveness of the proposed strategies by conducting simulation and experimental studies on synthetic data
Preț: 686.70 lei
Preț vechi: 938.99 lei
-27% Nou
Puncte Express: 1030
Preț estimativ în valută:
131.46€ • 137.17$ • 110.20£
131.46€ • 137.17$ • 110.20£
Carte tipărită la comandă
Livrare economică 06-20 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780128191644
ISBN-10: 0128191643
Pagini: 322
Dimensiuni: 152 x 229 x 15 mm
Greutate: 0.43 kg
Editura: ELSEVIER SCIENCE
ISBN-10: 0128191643
Pagini: 322
Dimensiuni: 152 x 229 x 15 mm
Greutate: 0.43 kg
Editura: ELSEVIER SCIENCE
Public țintă
Researchers in academia and industry and practitioners working in chemical and environmental engineeringCuprins
1. Introduction2. Linear latent variable approaches for fault detection3. Nonlinear latent variable approaches for fault detection4. Multiscale latent variable (MSLV) approaches for fault detection5. Interval latent variable (ILV) approaches for fault detection6. Model based approaches for fault detection7. Conclusions and Perspectives