Cantitate/Preț
Produs

Data Mining and Big Data: First International Conference, DMBD 2016, Bali, Indonesia, June 25-30, 2016. Proceedings: Lecture Notes in Computer Science, cartea 9714

Editat de Ying Tan, Yuhui Shi
en Limba Engleză Paperback – 14 iun 2016
The LNCS volume LNCS 9714 constitutes the refereed proceedings of the International Conference on Data Mining and Big Data, DMBD 2016, held in Bali, Indonesia, in June 2016.
The 57 papers presented in this volume were carefully reviewed and selected from 115 submissions. The theme of DMBD 2016 is "Serving Life with Data Science". Data mining refers to the activity of going through big data sets to look for relevant or pertinent information.
The papers are organized in 10 cohesive sections covering all major topics of the research and development of data mining and big data and one Workshop on Computational Aspects of Pattern Recognition and Computer Vision.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (6) 33536 lei  6-8 săpt.
  Springer Nature Singapore – 26 iul 2019 33536 lei  6-8 săpt.
  Springer International Publishing – 14 iun 2016 34675 lei  6-8 săpt.
  Springer Nature Singapore – 22 feb 2024 47487 lei  6-8 săpt.
  Springer Nature Singapore – 20 ian 2023 59646 lei  6-8 săpt.
  Springer Nature Singapore – 19 ian 2023 59794 lei  6-8 săpt.
  Springer Nature Singapore – 22 feb 2024 75980 lei  6-8 săpt.

Din seria Lecture Notes in Computer Science

Preț: 34675 lei

Preț vechi: 43344 lei
-20% Nou

Puncte Express: 520

Preț estimativ în valută:
6636 6869$ 5609£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319409726
ISBN-10: 3319409727
Pagini: 537
Ilustrații: XVI, 569 p. 141 illus.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.81 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seriile Lecture Notes in Computer Science, Information Systems and Applications, incl. Internet/Web, and HCI

Locul publicării:Cham, Switzerland

Cuprins

Challenges in Data Mining and Big Data.- Data Mining Algorithms.- Frequent Itemset Mining.- Spatial Data Mining.- Prediction.- Feature Selection.- Information Extraction.- Classification.- Anomaly Pattern and Diagnosis.- Data Visualization Analysis.- Privacy Policy.- Social Media.- Query Optimization and Processing Algorithm.- Big Data.- Computational Aspects of Pattern Recognition and Computer Vision.

Caracteristici

Includes supplementary material: sn.pub/extras