Cantitate/Preț
Produs

Data Reconciliation and Gross Error Detection: An Intelligent Use of Process Data

Autor Shankar Narasimhan, Cornelius Jordache
en Limba Engleză Hardback – 28 noi 1999
This book provides a systematic and comprehensive treatment of the variety of methods available for applying data reconciliation techniques. Data filtering, data compression and the impact of measurement selection on data reconciliation are also exhaustively explained.Data errors can cause big problems in any process plant or refinery. Process measurements can be correupted by power supply flucutations, network transmission and signla conversion noise, analog input filtering, changes in ambient conditions, instrument malfunctioning, miscalibration, and the wear and corrosion of sensors, among other factors. Here's a book that helps you detect, analyze, solve, and avoid the data acquisition problems that can rob plants of peak performance. This indispensable volume provides crucial insights into data reconciliation and gorss error detection techniques that are essential fro optimal process control and information systems. This book is an invaluable tool for engineers and managers faced with the selection and implementation of data reconciliation software, or for those developing such software. For industrial personnel and students, Data Reconciliation and Gross Error Detection is the ultimate reference.
Citește tot Restrânge

Preț: 114934 lei

Preț vechi: 157444 lei
-27% Nou

Puncte Express: 1724

Preț estimativ în valută:
22012 22679$ 18439£

Carte tipărită la comandă

Livrare economică 24 februarie-10 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780884152552
ISBN-10: 0884152553
Pagini: 350
Dimensiuni: 152 x 235 x 24 mm
Greutate: 0.74 kg
Editura: ELSEVIER SCIENCE

Cuprins

: Introduction. Measurement Errors and Error Reduction Techniques. Steady State Data Reconciliation for Bilinear Systems. Nonlinear Steady State Data Reconciliation. Data Reconciliation in Dynamic Systems. Introduction to Gross Error Detection. Multiple Gross Error Identification Strategies for Steady State Processes. Gross Error Detection in Dynamic Processes. Design of Sensor Networks. Industrial Applications of Data Reconciliation and Gross Error Detection Technologies. Appendix A: Basic concepts of linear algebra. Appendix B: Basic concepts of Graph Theory. Appendix C: Statistical Hypotheses Testing.

Recenzii

This is an excellent book on the subject - the authors have covered all the bases. If you want a book on data reconciliation and gross error detection, this is as complete and thorough a book as I can imagine. - Les A. Kane, Editor, Advanced Process Control and Information Systems