Deep Learning and Scientific Computing with R torch: Chapman &Hall/CRC The R Series
Autor Sigrid Keydanaen Limba Engleză Hardback – 5 apr 2023
Though still "young" as a project, R torch already has a vibrant community of users and developers. Experience shows that torch users come from a broad range of different backgrounds. This book aims to be useful to (almost) everyone. Globally speaking, its purposes are threefold:
- Provide a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch
- Again with a focus on conceptual explanation, show how to use torch in deep-learning applications, ranging from image recognition over time series prediction to audio classification
- Provide a concepts-first, reader-friendly introduction to selected scientific-computation topics (namely, matrix computations, the Discrete Fourier Transform, and wavelets), all accompanied by torch code you can play with.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 433.41 lei 6-8 săpt. | |
CRC Press – 5 apr 2023 | 433.41 lei 6-8 săpt. | |
Hardback (1) | 1071.15 lei 6-8 săpt. | |
CRC Press – 5 apr 2023 | 1071.15 lei 6-8 săpt. |
Din seria Chapman &Hall/CRC The R Series
- Preț: 350.96 lei
- 20% Preț: 529.96 lei
- 20% Preț: 424.82 lei
- Preț: 343.32 lei
- Preț: 358.30 lei
- 20% Preț: 548.69 lei
- 8% Preț: 490.79 lei
- 23% Preț: 1327.47 lei
- 8% Preț: 453.31 lei
- Preț: 400.98 lei
- 8% Preț: 386.32 lei
- Preț: 389.17 lei
- Preț: 391.57 lei
- Preț: 152.12 lei
- 8% Preț: 491.54 lei
- 20% Preț: 421.05 lei
- Preț: 356.63 lei
- 8% Preț: 418.06 lei
- Preț: 375.06 lei
- 8% Preț: 544.64 lei
- Preț: 359.66 lei
- 8% Preț: 437.61 lei
- Preț: 360.29 lei
- Preț: 260.53 lei
- 8% Preț: 422.96 lei
- 8% Preț: 438.87 lei
- Preț: 356.63 lei
- 20% Preț: 308.68 lei
- Preț: 235.73 lei
- 17% Preț: 271.58 lei
- 15% Preț: 513.32 lei
- Preț: 392.33 lei
- 9% Preț: 835.78 lei
- 20% Preț: 1329.88 lei
- 22% Preț: 447.69 lei
- 24% Preț: 566.03 lei
- 31% Preț: 842.05 lei
- 18% Preț: 1082.45 lei
- 20% Preț: 578.11 lei
- 26% Preț: 1014.74 lei
- 20% Preț: 1066.99 lei
- 25% Preț: 531.55 lei
Preț: 1071.15 lei
Preț vechi: 1306.27 lei
-18% Nou
Puncte Express: 1607
Preț estimativ în valută:
205.06€ • 211.00$ • 172.85£
205.06€ • 211.00$ • 172.85£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781032231389
ISBN-10: 1032231386
Pagini: 414
Ilustrații: 6 Tables, black and white; 59 Line drawings, black and white; 32 Halftones, black and white; 91 Illustrations, black and white
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.93 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman &Hall/CRC The R Series
ISBN-10: 1032231386
Pagini: 414
Ilustrații: 6 Tables, black and white; 59 Line drawings, black and white; 32 Halftones, black and white; 91 Illustrations, black and white
Dimensiuni: 156 x 234 x 24 mm
Greutate: 0.93 kg
Ediția:1
Editura: CRC Press
Colecția Chapman and Hall/CRC
Seria Chapman &Hall/CRC The R Series
Cuprins
Part 1. Getting familiar with torch 1. Overview 2. On torch, and how to get it 3. Tensors 4. Autograd 5. Function minimization with autograd 6. A neural network from scratch 7. Modules 8. Optimizers 9. Loss functions 10. Function minimization with L-BFGS 11. Modularizing the neural network Part 2. Deep learning with torch 12. Overview 13. Loading data 14. Training with luz 15. A first go at image classification 16. Making models generalize 17. Speeding up training 18. Image classification, take two: Improving performance 19. Image segmentation 20. Tabular data 21. Time series 22. Audio classification Part 3. Other things to do with torch: Matrices, Fourier Transform, and Wavelets 23. Overview 24. Matrix computations: Least-squares problems 25. Matrix computations: Convolution 26. Exploring the Discrete Fourier Transform (DFT) 27. The Fast Fourier Transform (FFT) 28. Wavelets
Notă biografică
Sigrid Keydana is an Applied Researcher at Posit (formerly RStudio, PBC). She has a background in the humanities, psychology, and information technology, and is passionate about explaining complex concepts in a concepts-first, comprehensible way.
Recenzii
"The book is very well written and easy to follow with plenty of illustrations and explanations via examples and codes. I have learned a lot from the book and believe that many R users can greatly benefit from it as well even without an extensive machine learning background."
- Yang Ni, Texa A&M University, U.S.A, The MAerican Statistician, April 2024
- Yang Ni, Texa A&M University, U.S.A, The MAerican Statistician, April 2024
Descriere
This book aims to be useful to (almost) everyone. Deep Learning and Scientific Computing with R Torch provides a thorough introduction to torch basics – both by carefully explaining underlying concepts and ideas, and showing enough examples for the reader to become "fluent" in torch.