Delay Equations: Functional-, Complex-, and Nonlinear Analysis: Applied Mathematical Sciences, cartea 110
Autor Odo Diekmann, Stephan A.van Gils, Sjoerd M.V. Lunel, Hans Otto Waltheren Limba Engleză Paperback – 23 iul 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 929.05 lei 6-8 săpt. | |
Springer – 23 iul 2012 | 929.05 lei 6-8 săpt. | |
Hardback (1) | 988.05 lei 6-8 săpt. | |
Springer – 9 mai 1995 | 988.05 lei 6-8 săpt. |
Din seria Applied Mathematical Sciences
- 23% Preț: 1367.93 lei
- 18% Preț: 405.27 lei
- 13% Preț: 429.49 lei
- 13% Preț: 430.67 lei
- 24% Preț: 906.76 lei
- 23% Preț: 659.04 lei
- 19% Preț: 743.15 lei
- 18% Preț: 883.37 lei
- 18% Preț: 772.22 lei
- 18% Preț: 923.24 lei
- 15% Preț: 626.99 lei
- Preț: 382.64 lei
- 24% Preț: 808.03 lei
- Preț: 439.74 lei
- Preț: 184.74 lei
- Preț: 387.77 lei
- 18% Preț: 939.15 lei
- 15% Preț: 625.05 lei
- 15% Preț: 513.69 lei
- Preț: 401.40 lei
- Preț: 379.14 lei
- 18% Preț: 714.91 lei
- 15% Preț: 690.83 lei
- Preț: 384.22 lei
- 18% Preț: 988.05 lei
- Preț: 391.67 lei
- 18% Preț: 1097.68 lei
- 18% Preț: 1102.28 lei
- 18% Preț: 1348.92 lei
- 18% Preț: 1097.22 lei
- 18% Preț: 1107.95 lei
- 15% Preț: 634.43 lei
Preț: 929.05 lei
Preț vechi: 1132.99 lei
-18% Nou
Puncte Express: 1394
Preț estimativ în valută:
177.82€ • 185.33$ • 148.03£
177.82€ • 185.33$ • 148.03£
Carte tipărită la comandă
Livrare economică 04-18 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461286967
ISBN-10: 1461286964
Pagini: 552
Ilustrații: XII, 536 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
ISBN-10: 1461286964
Pagini: 552
Ilustrații: XII, 536 p.
Dimensiuni: 155 x 235 x 29 mm
Greutate: 0.76 kg
Ediția:Softcover reprint of the original 1st ed. 1995
Editura: Springer
Colecția Springer
Seria Applied Mathematical Sciences
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
0 Introduction and preview.- 0.1 An example of a retarded functional differential equation.- 0.2 Solution operators.- 0.3 Synopsis.- 0.4 A few remarks on history.- I Linear autonomous RFDE.- I.1 Prelude: a motivated introduction to functions of bounded variation.- I.2 Linear autonomous RFDE and renewal equations.- I.3 Solving renewal equations by Laplace transformation.- I.4 Estimates for det ?(z) and related quantities.- I.5 Asymptotic behaviour for t ? ?.- I.6 Comments.- II The shift semigroup.- II.1 Introduction.- II.2 The prototype problem.- II.3 The dual space.- II.4 The adjoint shift semigroup.- II.5 The adjoint generator and the sun subspace.- II.6 The prototype system.- II.7 Comments.- III Linear RFDE as bounded perturbations.- III.1 The basic idea, followed by a digression on weak* integration.- III.2 Bounded perturbations in the sun-reflexive case.- III.3 Perturbations with finite dimensional range.- III.4 Back to RFDE.- III.5 Interpretation of the adjoint semigroup.- III.6 Equivalent description of the dynamics.- III.7 Complexification.- III.8 Remarks about the non-sun-reflexive case.- III.9 Comments.- IV Spectral theory.- IV.1 Introduction.- IV.2 Spectral decomposition for eventually compact semigroups.- IV.3 Delay equations.- IV.4 Characteristic matrices, equivalence and Jordan chains.- IV.5 The semigroup action on spectral subspaces for delay equations.- IV.6 Comments.- V Completeness or small solutions?.- V.l Introduction.- V.2 Exponential type calculus.- V.3 Completeness.- V.4 Small solutions.- V.5 Precise estimates for ??(z)-1?.- V.6 Series expansions.- V.7 Lower bounds and the Newton polygon.- V.8 Noncompleteness, series expansions and examples.- V.9 Arbitrary kernels of bounded variation.- V.10 Comments.- VI Inhomogeneous linear systems.-VI.1 Introduction.- VI.2 Decomposition in the variation-of-constants formula.- VI.3 Forcing with finite dimensional range.- VI.4 RFDE.- VI.5 Comments.- VII Semiflows for nonlinear systems.- VII.1 Introduction.- VII.2 Semiflows.- VII.3 Solutions to abstract integral equations.- VII.4 Smoothness.- VII.5 Linearization at a stationary point.- VII.6 Autonomous RFDE.- VII.7 Comments.- VIII Behaviour near a hyperbolic equilibrium.- VIII.1 Introduction.- VIII.2 Spectral decomposition.- VIII.3 Bounded solutions of the inhomogeneous linear equation.- VIII.4 The unstable manifold.- VIII.5 Invariant wedges and instability.- VIII.6 The stable manifold.- VIII.7 Comments.- IX The center manifold.- IX.1 Introduction.- IX.2 Spectral decomposition.- IX.3 Bounded solutions of the inhomogeneous linear equation.- IX.4 Modification of the nonlinearity.- IX.5 A Lipschitz center manifold.- IX.6 Contractions on embedded Banach spaces.- IX.7 The center manifold is of class Ck.- IX.8 Dynamics on and near the center manifold.- IX.9 Parameter dependence.- IX.10 A double eigenvalue at zero.- IX.11 Comments.- X Hopf bifurcation.- X.l Introduction.- X.2 The Hopf bifurcation theorem.- X.3 The direction of bifurcation.- X.4 Comments.- XI Characteristic equations.- XI.1 Introduction: an impressionistic sketch.- XI.2 The region of stability in a parameter plane.- XI.3 Strips.- XI.4 Case studies.- XI.5 Comments.- XII Time-dependent linear systems.- XII.1 Introduction.- XII.2 Evolutionary systems.- XII.3 Time-dependent linear RFDE.- XII.4 Invariance of X?: a counterexample and a sufficient condition.- XII.5 Perturbations with finite dimensional range.- XII.6 Comments.- XIII Floquet Theory.- XIII.1 Introduction.- XIII.2 Preliminaries on periodicity and a stability result.- XIII.3 Floquet multipliers.-XIII.4 Floquet representation on eigenspaces.- XIII.5 Comments.- XIV Periodic orbits.- XIV.1 Introduction.- XIV.2 The Floquet multipliers of a periodic orbit.- XIV.3 Poincaré maps.- XIV.4 Poincaré maps and Floquet multipliers.- XIV.5 Comments.- XV The prototype equation for delayed negative feedback: periodic solutions.- XV.1 Delayed feedback.- XV.2 Smoothness and oscillation of solutions.- XV.3 Slowly oscillating solutions.- XV.4 The a priori estimate for unstable behaviour.- XV.5 Slowly oscillating solutions which grow away from zero, periodic solutions.- XV.6 Estimates, proof of Theorem 5.5(i) and (iii).- XV.7 The fixed-point index for retracts in Banach spaces, Whyburn’s lemma.- XV.8 Proof of Theorem 5.5(ii) and (iv).- XV.9 Comments.- XVI On the global dynamics of nonlinear autonomous differential delay equations.- XVI.1 Negative feedback.- XVI.2 A limiting case.- XVI.3 Chaotic dynamics in case of negative feedback.- XVI.4 Mixed feedback.- XVI.5 Some global results for general autonomous RFDE.- Appendices.- I Bounded variation, measure and integration.- I.1 Functions of bounded variation.- I.2 Abstract integration.- II Introduction to the theory of strongly continuous semigroups of bounded linear operators and their adjoints.- II. 1 Strongly continuous semigroups.- II.2 Interlude: absolute continuity.- II.3 Adjoint semigroups.- II.4 Spectral theory and asymptotic behaviour.- III The operational calculus.- III.1 Vector-valued functions.- III.2 Bounded operators.- III.3 Unbounded operators.- IV Smoothness of the substitution operator.- V Tangent vectors, Banach manifolds and transversality.- V.1 Tangent vectors of subsets of Banach spaces.- V.2 Banach manifolds.- V.3 Submanifolds and transversality.- VI Fixed points of parameterized contractions.- VII Linearage-dependent population growth: elaboration of some of the exercises.- VIII The Hopf bifurcation theorem.- References.- List of symbols.- List of notation.