Differential and Riemannian Manifolds: Graduate Texts in Mathematics, cartea 160
Autor Serge Langen Limba Engleză Paperback – 4 feb 2012
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 450.29 lei 6-8 săpt. | |
Springer – 4 feb 2012 | 450.29 lei 6-8 săpt. | |
Hardback (1) | 583.36 lei 6-8 săpt. | |
Springer – 9 mar 1995 | 583.36 lei 6-8 săpt. |
Din seria Graduate Texts in Mathematics
- Preț: 402.87 lei
- Preț: 411.30 lei
- 17% Preț: 528.66 lei
- Preț: 361.66 lei
- 17% Preț: 398.97 lei
- Preț: 355.82 lei
- Preț: 425.07 lei
- Preț: 366.80 lei
- 17% Preț: 365.79 lei
- 17% Preț: 359.45 lei
- Preț: 450.64 lei
- Preț: 381.92 lei
- Preț: 431.31 lei
- Preț: 381.44 lei
- Preț: 407.88 lei
- 17% Preț: 360.40 lei
- 17% Preț: 402.19 lei
- 15% Preț: 359.94 lei
- 17% Preț: 359.58 lei
- Preț: 400.27 lei
- Preț: 488.86 lei
- 20% Preț: 571.26 lei
- 15% Preț: 535.54 lei
- Preț: 488.65 lei
- 15% Preț: 354.39 lei
- Preț: 336.24 lei
- 17% Preț: 432.31 lei
- 17% Preț: 363.59 lei
- 18% Preț: 298.81 lei
- 17% Preț: 364.47 lei
- 17% Preț: 366.47 lei
- 17% Preț: 366.06 lei
- Preț: 247.59 lei
- 17% Preț: 367.70 lei
- 17% Preț: 364.96 lei
- 17% Preț: 398.78 lei
- 17% Preț: 398.51 lei
- 17% Preț: 496.63 lei
- 17% Preț: 369.73 lei
- 20% Preț: 449.73 lei
- Preț: 407.79 lei
- Preț: 364.79 lei
- Preț: 357.19 lei
- Preț: 405.00 lei
- 17% Preț: 395.87 lei
- Preț: 400.42 lei
- 17% Preț: 423.59 lei
- 15% Preț: 587.36 lei
Preț: 450.29 lei
Nou
Puncte Express: 675
Preț estimativ în valută:
86.18€ • 90.42$ • 71.49£
86.18€ • 90.42$ • 71.49£
Carte tipărită la comandă
Livrare economică 29 ianuarie-12 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461286882
ISBN-10: 1461286883
Pagini: 384
Ilustrații: XIV, 364 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:3rd ed. 1995. Softcover reprint of the original 3rd ed. 1995
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1461286883
Pagini: 384
Ilustrații: XIV, 364 p.
Dimensiuni: 155 x 235 x 20 mm
Greutate: 0.54 kg
Ediția:3rd ed. 1995. Softcover reprint of the original 3rd ed. 1995
Editura: Springer
Colecția Springer
Seria Graduate Texts in Mathematics
Locul publicării:New York, NY, United States
Public țintă
GraduateCuprins
I Differential Calculus.- §1. Categories.- §2. Topological Vector Spaces.- §3. Derivatives and Composition of Maps.- §4. Integration and Taylor’s Formula.- §5. The Inverse Mapping Theorem.- II Manifolds.- §1. Atlases, Charts, Morphisms.- §2. Submanifolds, Immersions, Submersions.- §3. Partitions of Unity.- §4. Manifolds with Boundary.- III Vector Bundles.- §1. Definition, Pull Backs.- §2. The Tangent Bundle.- §3. Exact Sequences of Bundles.- §4. Operations on Vector Bundles.- §5. Splitting of Vector Bundles.- IV Vector Fields and Differential Equations.- §1. Existence Theorem for Differential Equations.- §2. Vector Fields, Curves, and Flows.- §3. Sprays.- §4. The Flow of a Spray and the Exponential Map.- §5. Existence of Tubular Neighborhoods.- §6. Uniqueness of Tubular Neighborhoods.- V Operations on Vector Fields and Differential Forms.- §1. Vector Fields, Differential Operators, Brackets.- §2. Lie Derivative.- $3. Exterior Derivative.- §4. The Poincaré Lemma.- §5. Contractions and Lie Derivative.- §6. Vector Fields and 1-Forms Under Self Duality.- §7. The Canonical 2-Form.- §8. Darboux’s Theorem.- VI The Theorem of Frobenius.- §1. Statement of the Theorem.- §2. Differential Equations Depending on a Parameter.- §3. Proof of the Theorem.- §4. The Global Formulation.- §5. Lie Groups and Subgroups.- VII Metrics.- §1. Definition and Functoriality.- §2. The Hilbert Group.- §3. Reduction to the Hilbert Group.- §4. Hilbertian Tubular Neighborhoods.- §5. The Morse—Palais Lemma.- §6. The Riemannian Distance.- §7. The Canonical Spray.- VIII Covariant Derivatives and Geodesics.- §1. Basic Properties.- §2. Sprays and Covariant Derivatives.- §3. Derivative Along a Curve and Parallelism.- §4. The Metric Derivative.- §5. More LocalResults on the Exponential Map.- §6. Riemannian Geodesic Length and Completeness.- IX Curvature.- §1. The Riemann Tensor.- §2. Jacobi Lifts.- §3. Application of Jacobi Lifts to dexpx.- §4. The Index Form, Variations, and the Second Variation Formula.- §5. Taylor Expansions.- X Volume Forms.- §1. The Riemannian Volume Form.- §2. Covariant Derivatives.- §3. The Jacobian Determinant of the Exponential Map.- §4. The Hodge Star on Forms.- §5. Hodge Decomposition of Differential Forms.- XI Integration of Differential Forms.- §1. Sets of Measure 0.- §2. Change of Variables Formula.- §3. Orientation.- §4. The Measure Associated with a Differential Form.- XII Stokes’ Theorem.- §1. Stokes’ Theorem for a Rectangular Simplex.- §2. Stokes’ Theorem on a Manifold.- §3. Stokes’ Theorem with Singularities.- XIII Applications of Stokes’ Theorem.- §1. The Maximal de Rham Cohomology.- §2. Moser’s Theorem.- §3. The Divergence Theorem.- §4. The Adjoint of d for Higher Degree Forms.- §5. Cauchy’s Theorem.- §6. The Residue Theorem.- Appendix The Spectral Theorem.- §1. Hilbert Space.- §2. Functionals and Operators.- §3. Hermitian Operators.
Recenzii
S. Lang
Differential and Riemannian Manifolds
"An introduction to differential geometry, starting from recalling differential calculus and going through all the basic topics such as manifolds, vector bundles, vector fields, the theorem of Frobenius, Riemannian metrics and curvature. Useful to the researcher wishing to learn about infinite-dimensional geometry."
—MATHEMATICAL REVIEWS
Differential and Riemannian Manifolds
"An introduction to differential geometry, starting from recalling differential calculus and going through all the basic topics such as manifolds, vector bundles, vector fields, the theorem of Frobenius, Riemannian metrics and curvature. Useful to the researcher wishing to learn about infinite-dimensional geometry."
—MATHEMATICAL REVIEWS