Diophantine Approximation: Festschrift for Wolfgang Schmidt: Developments in Mathematics, cartea 16
Editat de Robert F. Tichy, Hans Peter Schlickewei, Klaus Schmidten Limba Engleză Hardback – 9 iul 2008
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 647.08 lei 6-8 săpt. | |
SPRINGER VIENNA – 22 oct 2010 | 647.08 lei 6-8 săpt. | |
Hardback (1) | 655.60 lei 6-8 săpt. | |
SPRINGER VIENNA – 9 iul 2008 | 655.60 lei 6-8 săpt. |
Din seria Developments in Mathematics
- 24% Preț: 746.61 lei
- 18% Preț: 1193.25 lei
- 15% Preț: 482.17 lei
- Preț: 545.57 lei
- 20% Preț: 633.28 lei
- 20% Preț: 691.23 lei
- 15% Preț: 647.08 lei
- 15% Preț: 648.74 lei
- 18% Preț: 958.38 lei
- 18% Preț: 944.19 lei
- 18% Preț: 960.78 lei
- 18% Preț: 947.85 lei
- 18% Preț: 948.61 lei
- Preț: 389.70 lei
- 15% Preț: 643.48 lei
- Preț: 381.81 lei
- 18% Preț: 955.08 lei
- 15% Preț: 578.87 lei
- 15% Preț: 644.18 lei
- 15% Preț: 636.30 lei
- 18% Preț: 1105.19 lei
- 18% Preț: 954.45 lei
- 15% Preț: 637.46 lei
- 18% Preț: 945.47 lei
- 15% Preț: 646.11 lei
- 18% Preț: 957.94 lei
- 15% Preț: 646.62 lei
Preț: 655.60 lei
Preț vechi: 771.30 lei
-15% Nou
Puncte Express: 983
Preț estimativ în valută:
125.51€ • 129.15$ • 105.80£
125.51€ • 129.15$ • 105.80£
Carte tipărită la comandă
Livrare economică 01-15 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783211742792
ISBN-10: 3211742794
Pagini: 436
Ilustrații: VII, 422 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.84 kg
Ediția:2008
Editura: SPRINGER VIENNA
Colecția Springer
Seria Developments in Mathematics
Locul publicării:Vienna, Austria
ISBN-10: 3211742794
Pagini: 436
Ilustrații: VII, 422 p.
Dimensiuni: 155 x 235 x 28 mm
Greutate: 0.84 kg
Ediția:2008
Editura: SPRINGER VIENNA
Colecția Springer
Seria Developments in Mathematics
Locul publicării:Vienna, Austria
Public țintă
ResearchCuprins
The Mathematical Work of Wolfgang Schmidt.- SchÄffer’s Determinant Argument.- Arithmetic Progressions and Tic-Tac-Toe Games.- Metric Discrepancy Results for Sequences {nkx} and Diophantine Equations.- Mahler’s Classification of Numbers Compared with Koksma’s, II.- Rational Approximations to A q-Analogue of ? and Some Other q-Series.- Orthogonality and Digit Shifts in the Classical Mean Squares Problem in Irregularities of Point Distribution.- Applications of the Subspace Theorem to Certain Diophantine Problems.- A Generalization of the Subspace Theorem With Polynomials of Higher Degree.- On the Diophantine Equation G n (x) = G m (y) with Q (x, y)=0.- A Criterion for Polynomials to Divide Infinitely Many k- Nomials.- Approximants de Padé des q-Polylogarithmes.- The Set of Solutions of Some Equation for Linear Recurrence Sequences.- Counting Algebraic Numbers with Large Height I.- Class Number Conditions for the Diagonal Case of the Equation of Nagell and Ljunggren.- Construction of Approximations to Zeta-Values.- Quelques Aspects Diophantiens des VariéTés Toriques Projectives.- Une Inégalité de ?ojasiewicz Arithmétique.- On the Continued Fraction Expansion of a Class of Numbers.- The Number of Solutions of a Linear Homogeneous Congruence.- A Note on Lyapunov Theory for Brun Algorithm.- Orbit Sums and Modular Vector Invariants.- New Irrationality Results for Dilogarithms of Rational Numbers.
Caracteristici
Current information on important branches of diophantine approximation from leading experts in the field Diverse methods are presented The influence of diophantine approximation in other fields, e.g. combinatorial geometry, game theory Includes supplementary material: sn.pub/extras