Galois Theory and Modular Forms: Developments in Mathematics, cartea 11
Editat de Ki-ichiro Hashimoto, Katsuya Miyake, Hiroaki Nakamuraen Limba Engleză Hardback – 30 noi 2003
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1004.36 lei 6-8 săpt. | |
Springer Us – 21 sep 2011 | 1004.36 lei 6-8 săpt. | |
Hardback (1) | 958.38 lei 6-8 săpt. | |
Springer Us – 30 noi 2003 | 958.38 lei 6-8 săpt. |
Din seria Developments in Mathematics
- 24% Preț: 746.61 lei
- 18% Preț: 1193.25 lei
- 15% Preț: 482.17 lei
- Preț: 545.57 lei
- 20% Preț: 633.28 lei
- 20% Preț: 691.23 lei
- 15% Preț: 647.08 lei
- 15% Preț: 648.74 lei
- 18% Preț: 944.19 lei
- 18% Preț: 960.78 lei
- 18% Preț: 947.85 lei
- 18% Preț: 948.61 lei
- 15% Preț: 655.60 lei
- Preț: 389.70 lei
- 15% Preț: 643.48 lei
- Preț: 381.81 lei
- 18% Preț: 955.08 lei
- 15% Preț: 578.87 lei
- 15% Preț: 644.18 lei
- 15% Preț: 636.30 lei
- 18% Preț: 1105.19 lei
- 18% Preț: 954.45 lei
- 15% Preț: 637.46 lei
- 18% Preț: 945.47 lei
- 15% Preț: 646.11 lei
- 18% Preț: 957.94 lei
- 15% Preț: 646.62 lei
Preț: 958.38 lei
Preț vechi: 1168.76 lei
-18% Nou
Puncte Express: 1438
Preț estimativ în valută:
183.47€ • 191.43$ • 153.80£
183.47€ • 191.43$ • 153.80£
Carte tipărită la comandă
Livrare economică 13-27 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781402076893
ISBN-10: 1402076894
Pagini: 386
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.82 kg
Ediția:2003
Editura: Springer Us
Colecția Springer
Seria Developments in Mathematics
Locul publicării:New York, NY, United States
ISBN-10: 1402076894
Pagini: 386
Ilustrații: XII, 394 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.82 kg
Ediția:2003
Editura: Springer Us
Colecția Springer
Seria Developments in Mathematics
Locul publicării:New York, NY, United States
Public țintă
ResearchCuprins
I. Arithmetic geometry.- The arithmetic of Weierstrass points on modular curves X0(p).- Semistable abelian varieties with small division fields.- Q-curves with rational j-invariants and jacobian surfaces of GL2-type.- Points defined over cyclic quartic extensions on an elliptic curve and generalized Kummer surfaces.- The absolute anabelian geometry of hyperbolic curves.- II. Galois groups and Galois extensions.- Regular Galois realizations of PSL2(p2) over ?(T).- Middle convolution and Galois realizations.- On the essential dimension of p-groups.- Explicit constructions of generic polynomials for some elementary groups.- On dihedral extensions and Frobenius extensions.- On the non-existence of certain Galois extensions.- Frobenius modules and Galois groups.- III. Algebraic number theory.- On quadratic number fields each having an unramified extension which properly contains the Hilbert class field of its genus field.- Distribution of units of an algebraic number field.- On capitulation problem for 3-manifolds.- On the Iwasawa ?-invariant of the cyclotomic ?p-extension of certain quartic fields.- IV. Modular forms and arithmetic functions.- Quasimodular solutions of a differential equation of hypergeometric type.- Special values of the standard zeta functions.- p-adic properties of values of the modular j-function.- Thompson series and Ramanujan’s identities.- Generalized Rademacher functions and some congruence properties.