Cantitate/Preț
Produs

Elliptic Curves and Arithmetic Invariants: Springer Monographs in Mathematics

Autor Haruzo Hida
en Limba Engleză Hardback – 9 iun 2013
This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics.   This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties.  Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.  Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.  Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 85004 lei  6-8 săpt.
  Springer – 8 feb 2015 85004 lei  6-8 săpt.
Hardback (1) 85588 lei  6-8 săpt.
  Springer – 9 iun 2013 85588 lei  6-8 săpt.

Din seria Springer Monographs in Mathematics

Preț: 85588 lei

Preț vechi: 104375 lei
-18% Nou

Puncte Express: 1284

Preț estimativ în valută:
16383 17615$ 13658£

Carte tipărită la comandă

Livrare economică 19 decembrie 24 - 02 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781461466567
ISBN-10: 1461466563
Pagini: 466
Ilustrații: XVIII, 450 p.
Dimensiuni: 155 x 235 x 30 mm
Greutate: 0.83 kg
Ediția:2013
Editura: Springer
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

1 Non-triviality of Arithmetic Invariants​.- 2 Elliptic Curves and Modular Forms.- 3 Invariants, Shimura Variety and Hecke Algebra.- 4 Review of Scheme Theory.- 5 Geometry of Variety.- 6 Elliptic and Modular Curves over Rings.- 7 Modular Curves as Shimura Variety.- 8 Non-vanishing Modulo p of Hecke L–values.- 9 p-Adic Hecke L-functions and their μ-invariants.- 10 Toric Subschemes in a Split Formal Torus.- 11 Hecke Stable Subvariety is a Shimura Subvariety​.- References.- Symbol Index.- Statement Index.- Subject Index.

Recenzii

“The main aim of the book is to give an account of Hida’s results on arithmetic invariants in an accessible way. … The book is intended for mathematicians with some background on modular forms and is worthwhile for both graduate students and experts. … There are numerous examples, exercises, and remarks, all aimed at carefully helping the reader. In conclusion, this book is a very welcome addition to the mathematical literature.” (Florian Sprung, Mathematical Reviews, April, 2015)
“The author gives in this book a detailed account of results concerning arithmetic invariants, including µ-invariant and L-invariant. … it contains a detailed account of the author’s recent results concerning arithmetic invariants. The book, addressed to advanced graduate students and experts working in number theory and arithmetic geometry, is a welcome addition to this beautiful and difficult area of research.” (Andrzej Dąbrowski, zbMATH, Vol. 1284, 2014)

Notă biografică

Haruzo Hida is currently a professor of mathematics at University of California, Los Angeles.

Textul de pe ultima copertă

This book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including μ-invariant, L-invariant, and similar topics.   This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties.  Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.  Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.  Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves.

Caracteristici

Contains top-notch research that will interest both experts and advanced graduate students Written by an expert renowned for his discovery that modular forms fall into families, otherwise known as "Hida families" Limits material to elliptic modular curves and the corresponding Shimura curves in order to make the book more accessible to graduate students? Includes many exercises, examples, and applications that provide motivation for the reader Includes supplementary material: sn.pub/extras