Cantitate/Preț
Produs

Enumerative Theory Of Maps: Mathematics and Its Applications, cartea 468

Autor Liu Yanpei
en Limba Engleză Paperback – 6 noi 2012
Combinatorics as a branch of mathematics studies the arts of counting. Enumeration occupies the foundation of combinatorics with a large range of applications not only in mathematics itself but also in many other disciplines. It is too broad a task to write a book to show the deep development in every corner from this aspect. This monograph is intended to provide a unified theory for those related to the enumeration of maps. For enumerating maps the first thing we have to know is the sym­ metry of a map. Or in other words, we have to know its automorphism group. In general, this is an interesting, complicated, and difficult problem. In order to do this, the first problem we meet is how to make a map considered without symmetry. Since the beginning of sixties when Tutte found a way of rooting on a map, the problem has been solved. This forms the basis of the enumerative theory of maps. As soon as the problem without considering the symmetry is solved for one kind of map, the general problem with symmetry can always, in principle, be solved from what we have known about the automorphism of a polyhedron, a synonym for a map, which can be determined efficiently according to another monograph of the present author [Liu58].
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 64675 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 6 noi 2012 64675 lei  6-8 săpt.
Hardback (1) 65314 lei  6-8 săpt.
  SPRINGER NETHERLANDS – 31 aug 2000 65314 lei  6-8 săpt.

Din seria Mathematics and Its Applications

Preț: 64675 lei

Preț vechi: 76088 lei
-15% Nou

Puncte Express: 970

Preț estimativ în valută:
12377 12769$ 10475£

Carte tipărită la comandă

Livrare economică 05-19 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789401058834
ISBN-10: 9401058830
Pagini: 428
Ilustrații: XI, 411 p.
Dimensiuni: 160 x 240 x 22 mm
Greutate: 0.59 kg
Ediția:Softcover reprint of the original 1st ed. 1999
Editura: SPRINGER NETHERLANDS
Colecția Springer
Seria Mathematics and Its Applications

Locul publicării:Dordrecht, Netherlands

Public țintă

Research

Cuprins

1 Preliminaries.- §1.1 Maps.- §1.2 Polynomials on maps.- §1.3 Enufunctions.- §1.4 Polysum functions.- §1.5 The Lagrangian inversion.- §1.6 The shadow functional.- §1.7 Asymptotic estimation.- §1.8 Notes.- 2 Outerplanar Maps.- §2.1 Plane trees.- §2.2 Wintersweets.- §2.3 Unicyclic maps.- §2.4 General outerplanar maps.- §2.5 Notes.- 3 Triangulations.- §3.1 Outerplanar triangulations.- §3.2 Planar triangulations.- §3.3 Triangulations on the disc.- §3.4 Triangulations on the projective plane.- §3.5 Triangulations on the torus.- §3.6 Notes.- 4 Cubic Maps.- §4.1 Planar cubic maps.- §4.2 Bipartite cubic maps.- §4.3 Cubic Hamiltonian maps.- §4.4 Cubic maps on surfaces.- §4.5 Notes.- 5 Eulerian Maps.- §5.1 Planar Eulerian maps.- §5.2 Tutte formula.- §5.3 Planar Eulerian triangulations.- §5.4 Regular Eulerian maps.- §5.5 Notes.- 6 Nonseparable Maps.- §6.1 Outerplanar nonseparable maps.- §6.2 Eulerian nonseparable maps.- §6.3 Planar nonseparable maps.- §6.4 Nonseparable maps on the surfaces.- §6.5 Notes.- 7 Simple Maps.- §7.1 Loopless maps.- §7.2 Loopless Eulerian maps.- §7.3 General simple maps.- §7.4 Simple bipartite maps.- §7.5 Notes.- 8 General Maps.- §8.1 General planar maps.- §8.2 Planar c-nets.- §8.3 Convex polyhedra.- §8.4 Quadrangulations via c-nets.- §8.5 General maps on surfaces.- §8.6 Notes.- 9 Chrosum Equations.- §9.1 Tree equations.- §9.2 Outerplanar equations.- §9.3 General equations.- §9.4 Triangulation equations.- §9.5 Well definedness.- §9.6 Notes.- 10 Polysum Equations.- §10.1 Polysum for bitrees.- §10.2 Outerplanar polysums.- §10.3 General polysums.- §10.4 Nonseparable polysums.- §10.5 Notes.- 11 Chromatic Solutions.- §11.1 General solutions.- §11.2 Cubic triangles.- §11.3 Invariants.- §11.4 Four colorsolutions.- §11.5 Notes.- 12 Stochastic Behaviors.- §12.1 Asymptotics for outerplanar maps.- §12.2 The average of tree-rooted maps.- §12.3 Hamiltonian circuits per map.- §12.4 The asymmetry of maps.- §12.5 Asymptotics via equations.- §12.6 Notes.