Ergodic Theory and Semisimple Groups: Monographs in Mathematics, cartea 81
Autor R.J. Zimmeren Limba Engleză Hardback – 31 dec 1983
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 886.62 lei 6-8 săpt. | |
Birkhäuser Boston – 11 ian 2013 | 886.62 lei 6-8 săpt. | |
Hardback (1) | 738.43 lei 38-44 zile | |
Birkhäuser Boston – 31 dec 1983 | 738.43 lei 38-44 zile |
Din seria Monographs in Mathematics
- 18% Preț: 1120.81 lei
- 18% Preț: 1136.74 lei
- 15% Preț: 647.27 lei
- 18% Preț: 1129.96 lei
- 18% Preț: 1117.99 lei
- 15% Preț: 641.71 lei
- Preț: 453.76 lei
- 18% Preț: 892.74 lei
- Preț: 386.00 lei
- 18% Preț: 1111.97 lei
- Preț: 393.90 lei
- 15% Preț: 651.02 lei
- 15% Preț: 644.63 lei
- Preț: 398.15 lei
- Preț: 397.38 lei
- 15% Preț: 648.05 lei
- 15% Preț: 645.60 lei
- Preț: 419.91 lei
- 18% Preț: 964.10 lei
- 15% Preț: 648.74 lei
- 18% Preț: 894.46 lei
- 15% Preț: 665.26 lei
- 15% Preț: 644.49 lei
- 18% Preț: 1006.55 lei
Preț: 738.43 lei
Preț vechi: 971.63 lei
-24% Nou
Puncte Express: 1108
Preț estimativ în valută:
141.32€ • 145.79$ • 119.60£
141.32€ • 145.79$ • 119.60£
Carte tipărită la comandă
Livrare economică 01-07 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817631840
ISBN-10: 0817631844
Pagini: 209
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.49 kg
Ediția:1984
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 0817631844
Pagini: 209
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.49 kg
Ediția:1984
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchDescriere
This
book
is
based
on
a
course
given
at
the
University
of
Chicago
in
1980-81.
As
with
the
course,
the
main
motivation
of
this
work
is
to
present
an
accessible
treatment,
assuming
minimal
background,
of
the
profound
work
of
G.
A.
Margulis
concerning
rigidity,
arithmeticity,
and
structure
of
lattices
in
semi
simple
groups,
and
related
work
of
the
author
on
the
actions
of
semisimple
groups
and
their
lattice
subgroups.
In
doing
so,
we
develop
the
necessary
prerequisites
from
earlier
work
of
Borel,
Furstenberg,
Kazhdan,
Moore,
and
others.
One
of
the
difficulties
involved
in
an
exposition
of
this
material
is
the
continuous
interplay
between
ideas
from
the
theory
of
algebraic
groups
on
the
one
hand
and
ergodic
theory
on
the
other.
This,
of
course,
is
not
so
much
a
mathematical
difficulty
as
a
cultural
one,
as
the
number
of
persons
comfortable
in
both
areas
has
not
traditionally
been
large.
We
hope
this
work
will
also
serve
as
a
contribution
towards
improving
that
situation.
While
there
are
a
number
of
satisfactory
introductory
expositions
of
the
ergodic
theory
of
integer
or
real
line
actions,
there
is
no
such
exposition
of
the
type
of
ergodic
theoretic
results
with
which
we
shall
be
dealing
(concerning
actions
of
more
general
groups),
and
hence
we
have
assumed
absolutely
no
knowledge
of
ergodic
theory
(not
even
the
definition
of
"ergodic")
on
the
part
of
the
reader.
All
results
are
developed
in
full
detail.
Cuprins
1.
Introduction.-
2.
Moore’s
Ergodicity
Theorem.-
3.
Algebraic
Groups
and
Measure
Theory.-
4.
Amenability.-
5.
Rigidity.-
6.
Margulis’
Arithmeticity
Theorems.-
7.
Kazhdan’s
Property
(T).-
8.
Normal
Subgroups
of
Lattices.-
9.
Further
Results
on
Ergodic
Actions.-
10.
Generalizations
to
p-adic
groups
and
S-arithmetic
groups.-
Appendices.-
A.
Borel
spaces.-
B.
Almost
everywhere
identities
on
groups.-
References.