Reconstructive Integral Geometry: Monographs in Mathematics, cartea 98
Autor Victor Palamodoven Limba Engleză Hardback – 20 aug 2004
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 634.82 lei 6-8 săpt. | |
Birkhäuser Basel – 14 oct 2012 | 634.82 lei 6-8 săpt. | |
Hardback (1) | 644.49 lei 6-8 săpt. | |
Birkhäuser Basel – 20 aug 2004 | 644.49 lei 6-8 săpt. |
Din seria Monographs in Mathematics
- 18% Preț: 1120.81 lei
- 18% Preț: 1136.74 lei
- 15% Preț: 647.27 lei
- 18% Preț: 1129.96 lei
- 18% Preț: 1117.99 lei
- 15% Preț: 641.71 lei
- Preț: 453.76 lei
- 18% Preț: 892.74 lei
- Preț: 386.00 lei
- 18% Preț: 1111.97 lei
- 24% Preț: 738.43 lei
- Preț: 393.90 lei
- 15% Preț: 651.02 lei
- 15% Preț: 644.63 lei
- Preț: 398.15 lei
- Preț: 397.38 lei
- 15% Preț: 648.05 lei
- 15% Preț: 645.60 lei
- Preț: 419.91 lei
- 18% Preț: 964.10 lei
- 15% Preț: 648.74 lei
- 18% Preț: 894.46 lei
- 15% Preț: 665.26 lei
- 18% Preț: 1006.55 lei
Preț: 644.49 lei
Preț vechi: 758.23 lei
-15% Nou
Puncte Express: 967
Preț estimativ în valută:
123.34€ • 127.24$ • 104.39£
123.34€ • 127.24$ • 104.39£
Carte tipărită la comandă
Livrare economică 05-19 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764371296
ISBN-10: 3764371293
Pagini: 164
Ilustrații: XII, 164 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.53 kg
Ediția:2004
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3764371293
Pagini: 164
Ilustrații: XII, 164 p.
Dimensiuni: 155 x 235 x 17 mm
Greutate: 0.53 kg
Ediția:2004
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
1 Distributions and Fourier Transform.- 1.1 Introduction.- 1.2 Distributions and generalized functions.- 1.3 Tempered distributions.- 1.4 Homogeneous distributions.- 1.5 Manifolds and differential forms.- 1.6 Push down and pull back.- 1.7 More on the Fourier transform.- 1.8 Bandlimited functions and interpolation.- 2 Radon Transform.- 2.1 Properties.- 2.2 Inversion formulae.- 2.3 Alternative formulae.- 2.4 Range conditions.- 2.5 Frequency analysis.- 2.6 Radon transform of differential forms.- 3 The Funk Transform.- 3.1 Factorable mappings.- 3.2 Spaces of constant curvature.- 3.3 Inversion of the Funk transform.- 3.4 Radon’s inversion via Funk’s inversion.- 3.5 Unified form.- 3.6 Funk-Radon transform and wave fronts.- 3.7 Integral transform of boundary discontinuities.- 3.8 Nonlinear artifacts.- 3.9 Pizetti formula for arbitrary signature.- 4 Reconstruction from Line Integrals.- 4.1 Pencils of lines and John’s equation.- 4.2 Sources at infinity.- 4.3 Reduction to the Radon transform.- 4.4 Rays tangent to a surface.- 4.5 Sources on a proper curve.- 4.6 Reconstruction from plane integrals of sources.- 4.7 Line integrals of differential forms.- 4.8 Exponential ray transform.- 4.9 Attenuated ray transform.- 4.10 Inversion formulae.- 4.11 Range conditions.- 5 Flat Integral Transform.- 5.1 Reconstruction problem.- 5.2 Odd-dimensional subspaces.- 5.3 Even dimension.- 5.4 Range of the flat transform.- 5.5 Duality for the Funk transform.- 5.6 Duality in Euclidean space.- 6 Incomplete Data Problems.- 6.1 Completeness condition.- 6.2 Radon transform of Gabor functions.- 6.3 Reconstruction from limited angle data.- 6.4 Exterior problem.- 6.5 The parametrix method.- 7 Spherical Transform and Inversion.- 7.1 Problems.- 7.2 Arc integrals in the plane.- 7.3 Hemispherical integralsin space.- 7.4 Incomplete data.- 7.5 Spheres centred on a sphere.- 7.6 Spheres tangent to a manifold.- 7.7 Characteristic Cauchy problem.- 7.8 Fundamental solution for the adjoint operator.- 8 Algebraic Integral Transform.- 8.1 Problems.- 8.2 Special cases.- 8.3 Multiplicative differential equations.- 8.4 Funk transform of Leray forms.- 8.5 Differential equations for hypersurface integrals.- 8.6 Howard’s equations.- 8.7 Range of differential operators.- 8.8 Decreasing solutions of Maxwell’s system.- 8.9 Symmetric differential forms.- 9 Notes.- Notes to Chapter 1.- Notes to Chapter 2.- Notes to Chapter 3.- Notes to Chapter 4.- Notes to Chapter 5.- Notes to Chapter 6.- Notes to Chapter 7.- Notes to Chapter 8.
Recenzii
"This book is an excellent overview of the field of integral geometry with emphasis on the functional analytic and differential geometric aspects. The author proves theorems for some of the most important Radon transforms, including transforms on hyperplanes, k-planes, lines, and spheres, and he investigates incomplete (limited) data problems including microlocal analytic issues…This book contains many treasures in integral geometry…and it belongs on the shelf of any analyst or geometer who would like to see how deep functional analysis and differential geometry are used to solve important problems in integral geometry." —Mathematical Reviews
Caracteristici
Covers a gap in the literature which was caused by the fast development in the field over the last 15-20 years Addressed to researchers in both pure and applied mathematics