Linear and Quasilinear Parabolic Problems: Volume I: Abstract Linear Theory: Monographs in Mathematics, cartea 89
Autor Herbert Amannen Limba Engleză Hardback – 27 mar 1995
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1111.85 lei 6-8 săpt. | |
Birkhäuser Basel – 27 sep 2011 | 1111.85 lei 6-8 săpt. | |
Hardback (2) | 795.98 lei 6-8 săpt. | |
Springer International Publishing – mai 2019 | 795.98 lei 6-8 săpt. | |
Birkhäuser Basel – 27 mar 1995 | 1117.99 lei 6-8 săpt. |
Din seria Monographs in Mathematics
- 18% Preț: 1120.81 lei
- 18% Preț: 1136.74 lei
- 15% Preț: 647.27 lei
- 18% Preț: 1129.96 lei
- 15% Preț: 641.71 lei
- Preț: 453.76 lei
- 18% Preț: 892.74 lei
- Preț: 386.00 lei
- 18% Preț: 1111.97 lei
- 24% Preț: 738.43 lei
- Preț: 393.90 lei
- 15% Preț: 651.02 lei
- 15% Preț: 644.63 lei
- Preț: 398.15 lei
- Preț: 397.38 lei
- 15% Preț: 648.05 lei
- 15% Preț: 645.60 lei
- Preț: 419.91 lei
- 18% Preț: 964.10 lei
- 15% Preț: 648.74 lei
- 18% Preț: 894.46 lei
- 15% Preț: 665.26 lei
- 15% Preț: 644.49 lei
- 18% Preț: 1006.55 lei
Preț: 1117.99 lei
Preț vechi: 1363.40 lei
-18% Nou
Puncte Express: 1677
Preț estimativ în valută:
213.98€ • 222.55$ • 179.32£
213.98€ • 222.55$ • 179.32£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783764351144
ISBN-10: 3764351144
Pagini: 380
Ilustrații: XXXV, 338 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.71 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Basel, Switzerland
ISBN-10: 3764351144
Pagini: 380
Ilustrații: XXXV, 338 p.
Dimensiuni: 155 x 235 x 26 mm
Greutate: 0.71 kg
Ediția:1995
Editura: Birkhäuser Basel
Colecția Birkhäuser
Seria Monographs in Mathematics
Locul publicării:Basel, Switzerland
Public țintă
ResearchCuprins
Notations and Conventions.- 1 Topological Spaces.- 2 Locally Convex Spaces.- 3 Complexifications.- 4 Unbounded Linear Operators.- 5 General Conventions.- I Generators and Interpolation.- 1 Generators of Analytic Semigroups.- 2 Interpolation Functors.- II Cauchy Problems and Evolution Operators.- 1 Linear Cauchy Problems.- 2 Parabolic Evolution Operators.- 3 Linear Volterra Integral Equations.- 4 Existence of Evolution Operators.- 5 Stability Estimates.- 6 Invariance and Positivity.- III Maximal Regularity.- 1 General Principles.- 2 Maximal Hölder Regularity.- 3 Maximal Continuous Regularity.- 4 Maximal Sobolev Regularity.- IV Variable Domains.- 1 Higher Regularity.- 2 Constant Interpolation Spaces.- 3 Maximal Regularity.- V Scales of Banach Spaces.- 1 Banach Scales.- 2 Evolution Equations in Banach Scales.- List of Symbols.
Textul de pe ultima copertă
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.
Caracteristici
Follows the steps of Vol. I "Abstract Linear Theory" Features a clear and rigorous presentation style Fills a gap in literature