Cantitate/Preț
Produs

Eta Products and Theta Series Identities: Springer Monographs in Mathematics

Autor Günter Köhler
en Limba Engleză Paperback – 27 ian 2013
This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere.The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II of the book. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 58983 lei  38-44 zile
  Springer Berlin, Heidelberg – 27 ian 2013 58983 lei  38-44 zile
Hardback (1) 66461 lei  43-57 zile
  Springer Berlin, Heidelberg – 8 dec 2010 66461 lei  43-57 zile

Din seria Springer Monographs in Mathematics

Preț: 58983 lei

Preț vechi: 73728 lei
-20% Nou

Puncte Express: 885

Preț estimativ în valută:
11288 11754$ 9540£

Carte tipărită la comandă

Livrare economică 05-11 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783642266294
ISBN-10: 3642266290
Pagini: 644
Ilustrații: XXII, 622 p.
Dimensiuni: 155 x 235 x 34 mm
Greutate: 0.89 kg
Ediția:2011
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Springer Monographs in Mathematics

Locul publicării:Berlin, Heidelberg, Germany

Public țintă

Research

Cuprins

Introduction.- Part I: Theoretical background.- 1. Dedekind’s eta function and modular forms.- 2. Eta products.- 3. Eta products and lattice points in simplices.- 4. An algorithm for listing lattice points in a simplex.- 5. Theta series with Hecke character.- 6. Groups of coprime residues in quadratic fields.- Part II: Examples.-7. Ideal numbers for quadratic fields.- 8 Eta products of weight .- 9. Level 1: The full modular group.- 10. The prime level N = 2.- 11. The prime level N = 3.- 12. Prime levels N = p ≥ 5.- 13. Level N = 4.- 14. Levels N = p2 with primes p ≥ 3.- 15 Levels N = p3 and p4 for primes p.- 16. Levels N = pq with primes 3 ≤ p < q.- 17. Weight 1 for levels N = 2p with primes p ≥ 5.- 18. Level N = 6.- 19. Weight 1 for prime power levels p5 and p6.- 20. Levels p2q for distinct primes p = 2 and q.- 21. Levels 4p for the primes p = 23 and 19.- 22. Levels 4p for p = 17 and 13.- 23. Levels 4p for p = 11 and 7.- 24. Weight 1 for level N = 20.- 25. Cuspidal eta products of weight 1 for level 12.- 26. Non-cuspidal eta products of weight 1 for level 12.- 27. Weight 1 for Fricke groups Γ∗(q3p).- 28. Weight 1 for Fricke groups Γ∗(2pq).- 29. Weight 1 for Fricke groups Γ∗(p2q2).- 30. Weight 1 for the Fricke groups Γ∗(60) and Γ∗(84).- 31. Some more levels 4pq with odd primes p _= q.- References.- Directory of Characters.- Index of Notations.- Index.

Recenzii

From the reviews:
“This monograph serves as a leading reference on the theory of eta products and theta series identities. The systematic approach to the theory of modular forms in general and eta products in particular makes it a reader-friendly monograph for those who have basic knowledge about the theory.” (Wissam Raji, Mathematical Reviews, Issue 2012 a)
“In the book under review mainly a highly interesting special class of theta functions is investigated, the class of Hecke theta series for quadratic number fields. … Most of the identities in the later sections of this monograph are supposed to be new. Clearly this is a most valuable addition to the literature on modular forms, and the modular forms people must be most grateful to the author for his fine achievement.” (Jürgen Elstrodt, Zentralblatt MATH, Vol. 1222, 2011)

Textul de pe ultima copertă

This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere.The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices.

Caracteristici

This monograph brings to the public the large number of identities which were found during the past 20 years The majority of these identities is new and has not been published elsewhere Presents more than hundred examples for the coincidence of theta series of weight 1 on three distinct quadratic fields Includes supplementary material: sn.pub/extras