Excursions into Combinatorial Geometry: Universitext
Autor Vladimir Boltyanski, Horst Martini, P.S. Soltanen Limba Engleză Paperback – 14 noi 1996
Din seria Universitext
- 13% Preț: 353.48 lei
- Preț: 418.67 lei
- Preț: 465.61 lei
- Preț: 358.44 lei
- 17% Preț: 394.41 lei
- 15% Preț: 737.46 lei
- 17% Preț: 364.56 lei
- 15% Preț: 543.75 lei
- 15% Preț: 497.21 lei
- Preț: 634.38 lei
- Preț: 360.93 lei
- 17% Preț: 431.50 lei
- 13% Preț: 355.51 lei
- 17% Preț: 364.81 lei
- Preț: 396.53 lei
- 17% Preț: 365.34 lei
- 15% Preț: 553.33 lei
- Preț: 371.98 lei
- Preț: 673.45 lei
- 15% Preț: 509.58 lei
- 17% Preț: 427.32 lei
- 17% Preț: 426.76 lei
- 17% Preț: 427.68 lei
- 20% Preț: 569.54 lei
- Preț: 356.77 lei
- 17% Preț: 369.06 lei
- 19% Preț: 429.21 lei
- Preț: 487.96 lei
- 20% Preț: 628.22 lei
- Preț: 372.86 lei
- Preț: 319.07 lei
- Preț: 379.86 lei
- Preț: 445.88 lei
- Preț: 382.36 lei
- 15% Preț: 533.72 lei
- 15% Preț: 496.02 lei
- 15% Preț: 474.82 lei
- Preț: 389.70 lei
- Preț: 484.08 lei
- 15% Preț: 469.48 lei
- 15% Preț: 643.48 lei
- Preț: 415.02 lei
- 15% Preț: 602.25 lei
- 20% Preț: 510.24 lei
- 15% Preț: 588.37 lei
- Preț: 381.59 lei
- Preț: 489.87 lei
- Preț: 493.89 lei
- 20% Preț: 332.24 lei
Preț: 450.94 lei
Preț vechi: 530.52 lei
-15% Nou
Puncte Express: 676
Preț estimativ în valută:
86.31€ • 88.95$ • 72.87£
86.31€ • 88.95$ • 72.87£
Carte tipărită la comandă
Livrare economică 03-17 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783540613411
ISBN-10: 3540613412
Pagini: 440
Ilustrații: XIV, 423 p. 1 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.65 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
ISBN-10: 3540613412
Pagini: 440
Ilustrații: XIV, 423 p. 1 illus.
Dimensiuni: 155 x 235 x 23 mm
Greutate: 0.65 kg
Ediția:1997
Editura: Springer Berlin, Heidelberg
Colecția Springer
Seria Universitext
Locul publicării:Berlin, Heidelberg, Germany
Public țintă
ResearchCuprins
I. Convexity.- §1 Convex sets.- §2 Faces and supporting hyperplanes.- §3 Polarity.- §4 Direct sum decompositions.- §5 The lower semicontinuity of the operator “exp”.- §6 Convex cones.- §7 The Farkas Lemma and its generalization.- §8 Separable systems of convex cones.- II. d-Convexity in normed spaces.- §9 The definition of d-convex sets.- §10 Support properties of d-convex sets.- §11 Properties of d-convex flats.- §12 The join of normed spaces.- §13 Separability of d-convex sets.- §14 The Helly dimension of a set family.- §15 d-Star-shaped sets.- III. H-convexity.- §16 The functional md for vector systems.- §17 The ?-displacement Theorem.- §18 Lower semicontinuity of the functional md.- §19 The definition of H-convex sets.- §20 Upper semicontinuity of the H-convex hull.- §21 Supporting cones of H-convex bodies.- §22 The Helly Theorem for H-convex sets.- §23 Some applications of H-convexity.- §24 Some remarks on connection between d-convexity and H-convexity.- IV. The Szökefalvi-Nagy Problem.- §25 The Theorem of Szökefalvi-Nagy and its generalization.- §26 Description of vector systems with md H = 2 that are not one-sided.- §27 The 2-systems without particular vectors.- §28 The 2-system with particular vectors.- §29 The compact, convex bodies with md M = 2.- §30 Centrally symmetric bodies.- V. Borsuk’s partition problem.- §31 Formulation of the problem and a survey of results.- §32 Bodies of constant width in Euclidean and normed spaces.- §33 Borsuk’s problem in normed spaces.- VI. Homothetic covering and illumination.- §34 The main problem and a survey of results.- §35 The hypothesis of Gohberg-Markus-Hadwiger.- §36 The infinite values of the functional b, b2032;, c, c2032;,.- §37 Inner illumination of convex bodies.- §38Estimates for the value of the functional p(K).- VII. Combinatorial geometry of belt bodies.- §39 The integral respresentation of zonoids.- §40 Belt vectors of a compact, convex body.- §41 Definition of belt bodies.- §42 Solution of the illumination problem for belt bodies.- §43 Solution of the Szökefalvi-Nagy problem for belt bodies.- §44 Minimal fixing systems.- VIII. Some research problems.- Author Index.- List of Symbols.