Cantitate/Preț
Produs

Experimental Research of Cavity Optomechanics: Springer Theses

Autor Zhen Shen
en Limba Engleză Paperback – 13 ian 2022
This thesis presents experimental research on the interaction between the optical field and the mechanical oscillator in whispering-gallery mode microcavities. It demonstrates how optomechanical interactions in a microresonator can be used to achieve non-magnetic non-reciprocity and develop all-optically controlled non-reciprocal multifunctional photonic devices. The thesis also discusses the interaction between the travelling optical and mechanical whispering-gallery modes, paving the way for non-reciprocal light storage as a coherent, circulating acoustic wave with a lifetime of up to tens of microseconds. Lastly, the thesis presents a high-frequency phase-sensitive heterodyne vibrometer, operating up to 10 GHz, which can be used for the high-resolution, non-invasive mapping of the vibration patterns of acoustic devices. The results presented here show that optomechanical devices hold great potential in the field of information processing.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 90929 lei  43-57 zile
  Springer Nature Singapore – 13 ian 2022 90929 lei  43-57 zile
Hardback (1) 91496 lei  43-57 zile
  Springer Nature Singapore – 13 ian 2021 91496 lei  43-57 zile

Din seria Springer Theses

Preț: 90929 lei

Preț vechi: 110888 lei
-18% Nou

Puncte Express: 1364

Preț estimativ în valută:
17404 18139$ 14488£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9789813344600
ISBN-10: 9813344601
Ilustrații: XIV, 102 p. 56 illus., 55 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.18 kg
Ediția:1st ed. 2021
Editura: Springer Nature Singapore
Colecția Springer
Seria Springer Theses

Locul publicării:Singapore, Singapore

Cuprins

Introduction.- Whispering-gallery modes microcavity.- Optomechanical interaction.- Optomechanically induced non-reciprocity.- Brillouin-scattering-induced transparency and non-reciprocal light storage.- Packaged optomechanical microresonator.- sensitive imaging of vibrational mode.- Conclusion.

Notă biografică

Dr. Zhen Shen received his Ph.D. from the University of Science and Technology of China, Hefei in 2017, under the supervision of Prof. Chun-Hua Dong. His research chiefly focuses on micro/nano optics, microcavities and optomechanics.

Textul de pe ultima copertă

This thesis presents experimental research on the interaction between the optical field and the mechanical oscillator in whispering-gallery mode microcavities. It demonstrates how optomechanical interactions in a microresonator can be used to achieve non-magnetic non-reciprocity and develop all-optically controlled non-reciprocal multifunctional photonic devices. The thesis also discusses the interaction between the travelling optical and mechanical whispering-gallery modes, paving the way for non-reciprocal light storage as a coherent, circulating acoustic wave with a lifetime of up to tens of microseconds. Lastly, the thesis presents a high-frequency phase-sensitive heterodyne vibrometer, operating up to 10 GHz, which can be used for the high-resolution, non-invasive mapping of the vibration patterns of acoustic devices. The results presented here show that optomechanical devices hold great potential in the field of information processing.

Caracteristici

Nominated as an outstanding Ph.D. thesis by the University of Science and Technology of China Demonstrates optomechanically induced non-reciprocity Elaborates on how to create non-reciprocal multifunctional photonic devices Successfully demonstrates Brillouin-scattering-induced transparency and non-reciprocal light storage