Extensions to the No-Core Shell Model: Importance-Truncation, Regulators and Reactions: Springer Theses
Autor Michael Karl Gerhard Kruseen Limba Engleză Hardback – 19 sep 2013
This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 620.08 lei 6-8 săpt. | |
Springer International Publishing – 23 aug 2016 | 620.08 lei 6-8 săpt. | |
Hardback (1) | 624.71 lei 6-8 săpt. | |
Springer International Publishing – 19 sep 2013 | 624.71 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.53 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.82 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.68 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.89 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.36 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.20 lei
- 20% Preț: 555.57 lei
Preț: 624.71 lei
Preț vechi: 734.95 lei
-15% Nou
Puncte Express: 937
Preț estimativ în valută:
119.60€ • 124.31$ • 99.16£
119.60€ • 124.31$ • 99.16£
Carte tipărită la comandă
Livrare economică 06-20 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319013923
ISBN-10: 3319013920
Pagini: 140
Ilustrații: XIII, 126 p. 52 illus., 45 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.34 kg
Ediția:2013
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3319013920
Pagini: 140
Ilustrații: XIII, 126 p. 52 illus., 45 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.34 kg
Ediția:2013
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Public țintă
ResearchCuprins
Introduction to Low-Energy Nuclear Physics.- The No Core Shell Model.- Importance Truncated No Core Shell Model.- UV and IR Properties of the NCSM.- Extending the NCSM with the RGM.- Conclusion.
Notă biografică
Current affiliation:
Lawrence Livermore National Laboratory
Livermore, CA 94550
USA
Research performed at:
University of Arizona
Department of Physics
Tucson, AZ 85721
USA
Dr. Michael Kruse completed his Ph.D. thesis in April 2012 at the University of Arizona, USA, and is currently at Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA. He was twice awarded with the Galileo Circle Scholars award, in 2009 and 2012, which are given by the Galileo Circle at the University of Arizona to the finest undergraduate and graduate science students.
Lawrence Livermore National Laboratory
Livermore, CA 94550
USA
Research performed at:
University of Arizona
Department of Physics
Tucson, AZ 85721
USA
Dr. Michael Kruse completed his Ph.D. thesis in April 2012 at the University of Arizona, USA, and is currently at Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA. He was twice awarded with the Galileo Circle Scholars award, in 2009 and 2012, which are given by the Galileo Circle at the University of Arizona to the finest undergraduate and graduate science students.
Textul de pe ultima copertă
Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations.
This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
Caracteristici
Nominated by University of Arizona, USA, as an outstanding Ph.D. thesis Presents three extensions to the No-Core Shell Model which allow for larger calculations of nuclei, specifically for the p-shell nuclei Develops a new technique for reducing basis spaces so that heavier nuclei can be investigated within the No-Core Shell Model Provides an understanding of how structures of different atomic nuclei arise directly from the fundamental strong interactions among protons and neutrons