Cantitate/Preț
Produs

Extensions to the No-Core Shell Model: Importance-Truncation, Regulators and Reactions: Springer Theses

Autor Michael Karl Gerhard Kruse
en Limba Engleză Hardback – 19 sep 2013
Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations.
This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 59950 lei  6-8 săpt.
  Springer International Publishing – 23 aug 2016 59950 lei  6-8 săpt.
Hardback (1) 60396 lei  6-8 săpt.
  Springer International Publishing – 19 sep 2013 60396 lei  6-8 săpt.

Din seria Springer Theses

Preț: 60396 lei

Preț vechi: 71055 lei
-15% Nou

Puncte Express: 906

Preț estimativ în valută:
11562 12595$ 9699£

Carte tipărită la comandă

Livrare economică 19 decembrie 24 - 02 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9783319013923
ISBN-10: 3319013920
Pagini: 140
Ilustrații: XIII, 126 p. 52 illus., 45 illus. in color.
Dimensiuni: 155 x 235 x 12 mm
Greutate: 0.34 kg
Ediția:2013
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses

Locul publicării:Cham, Switzerland

Public țintă

Research

Cuprins

Introduction to Low-Energy Nuclear Physics.- The No Core Shell Model.- Importance Truncated No Core Shell Model.- UV and IR Properties of the NCSM.- Extending the NCSM with the RGM.- Conclusion.

Notă biografică

Current affiliation:
Lawrence Livermore National Laboratory
Livermore, CA 94550
USA
Research performed at:
University of Arizona
Department of Physics
Tucson, AZ 85721
USA
Dr. Michael Kruse completed his Ph.D. thesis in April 2012 at the University of Arizona, USA, and is currently at Lawrence Livermore National Laboratory (LLNL), Livermore, CA, USA. He was twice awarded with the Galileo Circle Scholars award, in 2009 and 2012, which are given by the Galileo Circle at the University of Arizona to the finest undergraduate and graduate science students.

Textul de pe ultima copertă

Extensions to the No-Core Shell Model presents three extensions to the No-Core Shell Model (NCSM) that allow for calculations of heavier nuclei, specifically for the p-shell nuclei. The Importance-Truncated NCSM (IT-NCSM) formulated on arguments of multi-configurational perturbation theory selects a small set of basis states from the initially large basis space in which the Hamiltonian is diagonalized. Previous IT-NCSM calculations have proven reliable, however, there has been no thorough investigation of the inherent error in the truncated IT-NCSM calculations.
This thesis provides a detailed study of IT-NCSM calculations and compares them to full NCSM calculations to judge the accuracy of IT-NCSM in heavier nuclei. When IT-NCSM calculations are performed, one often needs to extrapolate the ground-state energy from the finite basis (or model) spaces to the full NCSM model space. In this thesis a careful investigation of the extrapolation procedures was performed. On a related note, extrapolations in the NCSM are commonplace, but up to recently did not have the ultraviolet (UV) or infrared (IR) physics under control. This work additionally presents a method that maps the NCSM parameters into an effective-field theory inspired framework, in which the UV and IR physics are treated appropriately. The NCSM is well-suited to describe bound-state properties of nuclei, but is not well-adapted to describe loosely bound systems, such as the exotic nuclei near the neutron drip line. With the inclusion of the Resonating Group Method (RGM), the NCSM / RGM can provide a first-principles description of exotic nuclei and the first extension of the NCSM.

Caracteristici

Nominated by University of Arizona, USA, as an outstanding Ph.D. thesis Presents three extensions to the No-Core Shell Model which allow for larger calculations of nuclei, specifically for the p-shell nuclei Develops a new technique for reducing basis spaces so that heavier nuclei can be investigated within the No-Core Shell Model Provides an understanding of how structures of different atomic nuclei arise directly from the fundamental strong interactions among protons and neutrons