Cantitate/Preț
Produs

Foliations on Riemannian Manifolds: Universitext

Autor Philippe Tondeur
en Limba Engleză Paperback – 28 mar 1988
A first approximation to the idea of a foliation is a dynamical system, and the resulting decomposition of a domain by its trajectories. This is an idea that dates back to the beginning of the theory of differential equations, i.e. the seventeenth century. Towards the end of the nineteenth century, Poincare developed methods for the study of global, qualitative properties of solutions of dynamical systems in situations where explicit solution methods had failed: He discovered that the study of the geometry of the space of trajectories of a dynamical system reveals complex phenomena. He emphasized the qualitative nature of these phenomena, thereby giving strong impetus to topological methods. A second approximation is the idea of a foliation as a decomposition of a manifold into submanifolds, all being of the same dimension. Here the presence of singular submanifolds, corresponding to the singularities in the case of a dynamical system, is excluded. This is the case we treat in this text, but it is by no means a comprehensive analysis. On the contrary, many situations in mathematical physics most definitely require singular foliations for a proper modeling. The global study of foliations in the spirit of Poincare was begun only in the 1940's, by Ehresmann and Reeb.
Citește tot Restrânge

Din seria Universitext

Preț: 62030 lei

Preț vechi: 72976 lei
-15% Nou

Puncte Express: 930

Preț estimativ în valută:
11872 12374$ 9883£

Carte tipărită la comandă

Livrare economică 06-20 ianuarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9780387967073
ISBN-10: 0387967079
Pagini: 247
Ilustrații: XI, 247 p.
Dimensiuni: 155 x 235 x 14 mm
Greutate: 0.37 kg
Ediția:Softcover reprint of the original 1st ed. 1988
Editura: Springer
Colecția Springer
Seria Universitext

Locul publicării:New York, NY, United States

Public țintă

Professional/practitioner

Cuprins

1. Introduction.- 2. Integrable forms.- 3. Foliations.- 4. Flat bundles and holonomy.- 5. Riemannian and totally geodesic foliations.- 6. Second fundamental form and mean curvature.- 7. Codimension one foliations.- 8. Foliations by level hypersurfaces.- 9. Infinitesimal automorphisms and basic forms.- 10. Flows.- 11. Lie foliations.- 12. Twisted duality.- 13. A comparison theorem.- References.- Appendix: Bibliography on foliations.- Index of notations.