From Geometry to Quantum Mechanics: In Honor of Hideki Omori: Progress in Mathematics, cartea 252
Editat de Yoshiaki Maeda, Peter Michor, Takushiro Ochiai, Akira Yoshiokaen Limba Engleză Hardback – 18 dec 2006
Din seria Progress in Mathematics
- 24% Preț: 740.79 lei
- Preț: 308.20 lei
- 20% Preț: 695.88 lei
- Preț: 362.51 lei
- Preț: 308.13 lei
- 18% Preț: 736.64 lei
- 9% Preț: 766.41 lei
- 20% Preț: 631.08 lei
- 24% Preț: 638.86 lei
- 15% Preț: 571.05 lei
- Preț: 385.81 lei
- Preț: 388.49 lei
- Preț: 370.50 lei
- Preț: 383.72 lei
- 18% Preț: 717.24 lei
- 15% Preț: 641.51 lei
- 15% Preț: 638.28 lei
- 18% Preț: 882.79 lei
- Preț: 378.64 lei
- Preț: 384.47 lei
- Preț: 372.21 lei
- 15% Preț: 522.66 lei
- 15% Preț: 632.01 lei
- 15% Preț: 639.73 lei
- Preț: 374.84 lei
- Preț: 385.81 lei
- Preț: 391.85 lei
- 15% Preț: 687.50 lei
- Preț: 416.92 lei
- Preț: 379.39 lei
- 18% Preț: 887.42 lei
- 18% Preț: 788.75 lei
- 15% Preț: 629.29 lei
- 18% Preț: 1110.76 lei
- 15% Preț: 485.73 lei
- 15% Preț: 583.11 lei
Preț: 635.86 lei
Preț vechi: 748.07 lei
-15% Nou
Puncte Express: 954
Preț estimativ în valută:
121.75€ • 126.78$ • 101.01£
121.75€ • 126.78$ • 101.01£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9780817645120
ISBN-10: 0817645128
Pagini: 324
Ilustrații: XVII, 324 p. 7 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:2007
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
ISBN-10: 0817645128
Pagini: 324
Ilustrații: XVII, 324 p. 7 illus.
Dimensiuni: 155 x 235 x 21 mm
Greutate: 0.59 kg
Ediția:2007
Editura: Birkhäuser Boston
Colecția Birkhäuser
Seria Progress in Mathematics
Locul publicării:Boston, MA, United States
Public țintă
ResearchCuprins
Global Analysis and Infinite-Dimensional Lie Groups.- Aspects of Stochastic Global Analysis.- A Lie Group Structure for Automorphisms of a Contact Weyl Manifold.- Riemannian Geometry.- Projective Structures of a Curve in a Conformal Space.- Deformations of Surfaces Preserving Conformal or Similarity Invariants.- Global Structures of Compact Conformally Flat Semi-Symmetric Spaces of Dimension 3 and of Non-Constant Curvature.- Differential Geometry of Analytic Surfaces with Singularities.- Symplectic Geometry and Poisson Geometry.- The Integration Problem for Complex Lie Algebroids.- Reduction, Induction and Ricci Flat Symplectic Connections.- Local Lie Algebra Determines Base Manifold.- Lie Algebroids Associated with Deformed Schouten Bracket of 2-Vector Fields.- Parabolic Geometries Associated with Differential Equations of Finite Type.- Quantizations and Noncommutative Geometry.- Toward Geometric Quantum Theory.- Resonance Gyrons and Quantum Geometry.- A Secondary Invariant of Foliated Spaces and Type III? von Neumann Algebras.- The Geometry of Space-Time and Its Deformations from a Physical Perspective.- Geometric Objects in an Approach to Quantum Geometry.
Textul de pe ultima copertă
This volume is composed of invited expository articles by well-known mathematicians in differential geometry and mathematical physics that have been arranged in celebration of Hideki Omori's recent retirement from Tokyo University of Science and in honor of his fundamental contributions to these areas.
The papers focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, infinite-dimensional Lie group theory, quantizations and noncommutative geometry, as well as applications of partial differential equations and variational methods to geometry. These articles will appeal to graduate students in mathematics and quantum mechanics, as well as researchers, differential geometers, and mathematical physicists.
Contributors include: M. Cahen, D. Elworthy, A. Fujioka, M. Goto, J. Grabowski, S. Gutt, J. Inoguchi, M. Karasev, O. Kobayashi, Y. Maeda, K. Mikami, N. Miyazaki, T. Mizutani, H. Moriyoshi, H. Omori, T. Sasai, D. Sternheimer, A. Weinstein, K. Yamaguchi, T. Yatsui, and A. Yoshioka.
The papers focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, infinite-dimensional Lie group theory, quantizations and noncommutative geometry, as well as applications of partial differential equations and variational methods to geometry. These articles will appeal to graduate students in mathematics and quantum mechanics, as well as researchers, differential geometers, and mathematical physicists.
Contributors include: M. Cahen, D. Elworthy, A. Fujioka, M. Goto, J. Grabowski, S. Gutt, J. Inoguchi, M. Karasev, O. Kobayashi, Y. Maeda, K. Mikami, N. Miyazaki, T. Mizutani, H. Moriyoshi, H. Omori, T. Sasai, D. Sternheimer, A. Weinstein, K. Yamaguchi, T. Yatsui, and A. Yoshioka.
Caracteristici
Invited articles in differential geometry and mathematical physics in honor of Hideki Omori Focus on recent trends and future directions in symplectic and Poisson geometry, global analysis, Lie group theory, quantizations and noncommutative geometry, as well as applications of PDEs and variational methods to geometry Will appeal to graduate students in mathematics and quantum mechanics; also a reference