Fundamental Aspects of Asymptotic Safety in Quantum Gravity: Springer Theses
Autor Zoë H. Sladeen Limba Engleză Paperback – 14 aug 2020
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 620.39 lei 6-8 săpt. | |
Springer International Publishing – 14 aug 2020 | 620.39 lei 6-8 săpt. | |
Hardback (1) | 626.48 lei 6-8 săpt. | |
Springer International Publishing – 17 iul 2019 | 626.48 lei 6-8 săpt. |
Din seria Springer Theses
- 5% Preț: 1130.67 lei
- Preț: 382.04 lei
- 15% Preț: 633.86 lei
- 18% Preț: 1195.68 lei
- Preț: 391.27 lei
- 18% Preț: 977.66 lei
- 18% Preț: 921.98 lei
- Preț: 544.50 lei
- 15% Preț: 630.15 lei
- 15% Preț: 629.70 lei
- 15% Preț: 626.33 lei
- 20% Preț: 558.79 lei
- 18% Preț: 924.30 lei
- 18% Preț: 1093.64 lei
- 15% Preț: 627.11 lei
- 15% Preț: 627.11 lei
- Preț: 276.66 lei
- 15% Preț: 623.58 lei
- 18% Preț: 873.12 lei
- 15% Preț: 627.93 lei
- Preț: 381.87 lei
- 20% Preț: 563.87 lei
- Preț: 385.44 lei
- 15% Preț: 625.02 lei
- 15% Preț: 628.89 lei
- 18% Preț: 1089.74 lei
- 20% Preț: 551.31 lei
- 18% Preț: 1081.25 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1201.06 lei
- 18% Preț: 925.84 lei
- 18% Preț: 925.06 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1204.16 lei
- 15% Preț: 627.11 lei
- 18% Preț: 1192.58 lei
- 15% Preț: 623.93 lei
- 18% Preț: 980.60 lei
- 15% Preț: 623.11 lei
- 15% Preț: 627.93 lei
- Preț: 379.42 lei
- 18% Preț: 979.20 lei
- Preț: 377.51 lei
- Preț: 377.51 lei
- 18% Preț: 1087.42 lei
- 18% Preț: 1088.21 lei
- Preț: 379.22 lei
- 15% Preț: 624.26 lei
- 20% Preț: 554.17 lei
- 20% Preț: 555.54 lei
Preț: 620.39 lei
Preț vechi: 729.88 lei
-15% Nou
Puncte Express: 931
Preț estimativ în valută:
118.72€ • 125.18$ • 98.83£
118.72€ • 125.18$ • 98.83£
Carte tipărită la comandă
Livrare economică 10-24 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030195090
ISBN-10: 3030195090
Pagini: 134
Ilustrații: XIII, 134 p. 17 illus., 4 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
ISBN-10: 3030195090
Pagini: 134
Ilustrații: XIII, 134 p. 17 illus., 4 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.22 kg
Ediția:1st ed. 2019
Editura: Springer International Publishing
Colecția Springer
Seria Springer Theses
Locul publicării:Cham, Switzerland
Cuprins
Introduction.- Solutions to the reconstruction problem.- Background independence in a background dependent RG.- Asymptotic solutions in asymptotic safety.- Outlook.
Textul de pe ultima copertă
After an extensive introduction to the asymptotic safety approach to quantum gravity, this thesis explains recent key advances reported in four influential papers. Firstly, two exact solutions to the reconstruction problem (how to recover a bare action from the effective average action) are provided. Secondly, the fundamental requirement of background independence in quantum gravity is successfully implemented. Working within the derivative expansion of conformally reduced gravity, the notion of compatibility is developed, uncovering the underlying reasons for background dependence generically forbidding fixed points in such models. Thirdly, in order to understand the true nature of fixed-point solutions, one needs to study their asymptotic behaviour. The author carefully explains how to find the asymptotic form of fixed point solutions within the f(R) approximation. Finally, the key findings are summarised and useful extensions of the work are identified. The thesis finishes by considering the need to incorporate matter into the formalism in a compatible way and touches upon potential opportunities to test asymptotic safety in the future.
Caracteristici
Nominated as an outstanding Ph.D. thesis by the University of Southampton, Southampton, UK Provides an extensive introduction to the asymptotic safety approach to quantum gravity Highlights important fundamental issues and explains key advances with clarity Presents a pedagogical guide to correctly constructing asymptotic solutions to fixed-point equations