Cantitate/Preț
Produs

Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory: Operations Research/Computer Science Interfaces Series, cartea 20

Autor Colin R. Reeves, Jonathan E. Rowe
en Limba Engleză Hardback – 31 dec 2002
Genetic Algorithms: Principles and Perspectives: A Guide to GA Theory is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops. However, this theoretical work is still rather fragmented, and the authors believe that it is the right time to provide the field with a systematic presentation of the current state of theory in the form of a set of theoretical perspectives. The authors do this in the interest of providing students and researchers with a balanced foundational survey of some recent research on GAs. The scope of the book includes chapter-length discussions of Basic Principles, Schema Theory, "No Free Lunch", GAs and Markov Processes, Dynamical Systems Model, Statistical Mechanics Approximations, Predicting GA Performance, Landscapes and Test Problems.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (1) 98946 lei  6-8 săpt.
  Springer Us – 22 mai 2013 98946 lei  6-8 săpt.
Hardback (1) 99607 lei  6-8 săpt.
  Springer Us – 31 dec 2002 99607 lei  6-8 săpt.

Din seria Operations Research/Computer Science Interfaces Series

Preț: 99607 lei

Preț vechi: 124509 lei
-20% Nou

Puncte Express: 1494

Preț estimativ în valută:
19065 19828$ 15976£

Carte tipărită la comandă

Livrare economică 13-27 martie

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781402072406
ISBN-10: 1402072406
Pagini: 332
Ilustrații: XI, 332 p. 4 illus.
Dimensiuni: 155 x 235 x 25 mm
Greutate: 0.67 kg
Ediția:2002
Editura: Springer Us
Colecția Springer
Seria Operations Research/Computer Science Interfaces Series

Locul publicării:New York, NY, United States

Public țintă

Research

Cuprins

Basic Principles.- Schema Theory.- No Free Lunch for GAs.- GAs as Markov Processes.- The Dynamical Systems Model.- Statistical Mechanics Approximations.- Predicting GA Performance.- Landscapes.- Summary.

Caracteristici

Is a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops