Cantitate/Preț
Produs

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning: Operations Research/Computer Science Interfaces Series, cartea 25

Autor Abhijit Gosavi
en Limba Engleză Paperback – 2 dec 2010
Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learningintroduces the evolving area of simulation-based optimization.
The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work.
Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are:
*An accessible introduction to reinforcement learning and parametric-optimization techniques.
*A step-by-step description of several algorithms of simulation-based optimization.
*A clear and simple introduction to the methodology of neural networks.
*A gentle introduction to convergence analysis of some of the methods enumerated above.
*Computer programs for many algorithms of simulation-based optimization.
Citește tot Restrânge

Toate formatele și edițiile

Toate formatele și edițiile Preț Express
Paperback (2) 72312 lei  43-57 zile
  Springer Us – 10 sep 2016 72312 lei  43-57 zile
  Springer Us – 2 dec 2010 90830 lei  38-44 zile
Hardback (1) 99589 lei  43-57 zile
  Springer Us – 30 oct 2014 99589 lei  43-57 zile

Din seria Operations Research/Computer Science Interfaces Series

Preț: 90830 lei

Preț vechi: 119513 lei
-24% Nou

Puncte Express: 1362

Preț estimativ în valută:
17383 18056$ 14439£

Carte tipărită la comandă

Livrare economică 29 ianuarie-04 februarie 25

Preluare comenzi: 021 569.72.76

Specificații

ISBN-13: 9781441953544
ISBN-10: 144195354X
Pagini: 584
Dimensiuni: 155 x 235 x 31 mm
Greutate: 0.81 kg
Ediția:Softcover reprint of hardcover 1st ed. 2003
Editura: Springer Us
Colecția Springer
Seria Operations Research/Computer Science Interfaces Series

Locul publicării:New York, NY, United States

Public țintă

Research

Descriere

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learningintroduces the evolving area of simulation-based optimization. Since it became possible to analyze random systems using computers, scientists and engineers have sought the means to optimize systems using simulation models. Only recently, however, has this objective had success in practice. Cutting-edge work in computational operations research, including non-linear programming (simultaneous perturbation), dynamic programming (reinforcement learning), and game theory (learning automata) has made it possible to use simulation in conjunction with optimization techniques. As a result, this research has given simulation added dimensions and power that it did not have in the recent past.
The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work.
Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are:
*An accessible introduction to reinforcement learning and parametric-optimization techniques.
*A step-by-step description of several algorithms of simulation-based optimization.
*A clear and simple introduction to the methodology of neural networks.
*A gentle introduction to convergence analysis of some of the methods enumerated above.
*Computer programs for many algorithms of simulation-based optimization.
This book is written for students and researchers in the fields of engineering (electrical, industrial and computer), computer science, operations research, management science, and applied mathematics.

Cuprins

List of Figures. List of Tables. Acknowledgements. Preface. 1. Background. 1.1. Why this book was written. 1.2. Simulation-based optimization and modern times. 1.3. How this book is organized. 2. Notation. 2.1. Chapter Overview. 2.2. Some basic conventions. 2.3. Vector notation. 2.4. Notation for matrices. 2.5. Notation for n-tuples. 2.6. Notation for sets. 2.7. Notation for sequences. 2.8. Notation for transformations. 2.9. Max, min and arg max. 2.10. Acronyms and abbreviations. 3. Probability theory: a refresher.3.1. Overview of this chapter. 3.2. Laws of probability. 3.3. Probability distributions. 3.4. Expected value of a random variable. 3.5. Standard deviation of a random variable. 3.6. Limit theorems. 3.7. Review questions. 4. Basic concepts underlying simulation. 4.1. Chapter overview. 4.2. Introductions. 4.3. Models. 4.4. Simulation modeling of random systems. 4.5. Concluding remarks. 4.6. Historical remarks. 4.7. Review questions. 5. Simulation optimization: an overview. 5.1. Chapter overview. 5.2. Stochastic parametric optimization. 5.3. Stochastic control optimization. 5.4. Historical remarks. 5.5. Review questions. 6. Response surfaces and neural nets. 6.1. Chapter overview. 6.2. RSM: an overview. 6.3. RSM: details. 6.4. Neuro-response surface methods. 6.5. Concluding remarks. 6.6. Bibliographic remarks. 6.7. Review questions. 7. Parametric optimization. 7.1. Chapter overview. 7.2. Continuous optimization. 7.3. Discrete optimization. 7.4. Hybrid solution spaces. 7.5. Concluding remarks. 7.6. Bibliographic remarks. 7.7. Review questions. 8. Dynamic programming. 8.1. Chapter overview. 8.2. Stochastic processes. 8.3. Markov processes, Markov chains and semi-Markov processes. 8.4. Markov decision problems. 8.5. How to solve an MDP using exhaustive enumeration. 8.6. Dynamic programming for average reward. 8.7. Dynamic programming and discounted reward. 8.8. The Bellman equation: an intuitive perspective. 8.9. Semi-Markov decision problems. 8.10. Modified policy iteration. 8.11. Miscellaneous topics related to MDPs and SMDPs. 8.12. Conclusions. 8.13. Bibliographic remarks. 8.14. Review questions. 9. Reinforcement learning. 9.1. Chapter overview. 9.2. The need for reinforcement learning. 9.3. Generating the TPM through straightforward counting. 9.4. Reinforcement learning: fundamentals. 9.5. Discounted reward reinforcement learning. 9.6. Average reward reinforcement learning. 9.7. Semi-Markov decision problems and RL. 9.8. RL algorithms and their DP counterparts. 9.9. Act

Caracteristici

Accessible introduction to reinforcement learning and parametric-optimization techniques
Step-by-step description of several algorithms of simulation-based optimization
Clear and simple introduction to the methodology of neural networks
Gentle introduction to convergence analysis of some of the methods enumerated above
Computer programs for many algorithms of simulation-based optimization

Notă biografică

Abhijit Gosavi is a leading international authority on reinforcement learning, stochastic dynamic programming and simulation-based optimization. The first edition of his Springer book “Simulation-Based Optimization” that appeared in 2003 was the first text to have appeared on that topic. He is regularly an invited speaker at major national and international conferences on operations research, reinforcement learning, adaptive/approximate dynamic programming, and systems engineering.
He has published more than fifty journal and conference articles – many of which have appeared in leading scholarly journals such as Management Science, Automatica, INFORMS Journal on Computing, Machine Learning, Journal of Retailing, Systems and Control Letters and the European Journal of Operational Research. He has also authored numerous book chapters on simulation-based optimization and operations research. His research has been funded by the National Science Foundation, Department of Defense, Missouri Department of Transportation, University of Missouri Research Board and industry. He has consulted extensively for the U.S. Department of Veterans Affairs and the mass media as a statistical/simulation analyst. He has received teaching awards from the Institute of Industrial Engineers.
He currently serves as an Associate Professor of Engineering Management and Systems Engineering at Missouri University of Science and Technology in Rolla, MO. He holds a masters degree in Mechanical Engineering from the Indian Institute of Technology and a Ph.D. in Industrial Engineering from the University of South Florida. He is a member of INFORMS, IIE and ASEE.

Textul de pe ultima copertă

Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of static and dynamic simulation-based optimization. Covered in detail are model-free optimization techniques – especially designed for those discrete-event, stochastic systems which can be simulated but whose analytical models are difficult to find in closed mathematical forms.
Key features of this revised and improved Second Edition include:
· Extensive coverage, via step-by-step recipes, of powerful new algorithms for static simulation optimization, including simultaneous perturbation, backtracking adaptive search, and nested partitions, in addition to traditional methods, such as response surfaces, Nelder-Mead search, and meta-heuristics (simulated annealing, tabu search, and genetic algorithms)
· Detailed coverage of the Bellman equation framework for Markov Decision Processes (MDPs), along with dynamic programming (value and policy iteration) for  discounted, average, and total reward performance metrics
· An in-depth consideration of dynamic simulation optimization via temporal differences and Reinforcement Learning: Q-Learning, SARSA, and R-SMART algorithms, and policy search, via API, Q-P-Learning, actor-critics, and learning automata
· A special examination of neural-network-based function approximation for Reinforcement Learning, semi-Markov decision processes (SMDPs), finite-horizon problems, two time scales, case studies for industrial tasks, computer codes (placed online), and convergence proofs, via Banach fixed point theory and Ordinary Differential Equations
Themed around three areas in separate sets of chapters – Static Simulation Optimization, Reinforcement Learning, and Convergence Analysis – this book is written for researchers and students in the fields of engineering (industrial, systems, electrical, and computer), operations research, computer science, and applied mathematics.