Genetic Programming Theory and Practice XIX: Genetic and Evolutionary Computation
Editat de Leonardo Trujillo, Stephan M. Winkler, Sara Silva, Wolfgang Banzhafen Limba Engleză Hardback – 12 mar 2023
Din seria Genetic and Evolutionary Computation
- 20% Preț: 899.26 lei
- 20% Preț: 567.90 lei
- 20% Preț: 959.44 lei
- 20% Preț: 626.79 lei
- 20% Preț: 591.21 lei
- 20% Preț: 625.49 lei
- 20% Preț: 319.76 lei
- 20% Preț: 624.54 lei
- 20% Preț: 957.37 lei
- 20% Preț: 958.63 lei
- 20% Preț: 618.85 lei
- 20% Preț: 318.63 lei
- 20% Preț: 327.52 lei
- 20% Preț: 321.17 lei
- 20% Preț: 626.61 lei
- 20% Preț: 323.38 lei
- 20% Preț: 1011.01 lei
- 20% Preț: 1403.33 lei
- 20% Preț: 946.43 lei
- 20% Preț: 1008.78 lei
- 20% Preț: 1417.33 lei
- 20% Preț: 903.71 lei
- 20% Preț: 593.53 lei
Preț: 954.82 lei
Preț vechi: 1193.52 lei
-20% Nou
Puncte Express: 1432
Preț estimativ în valută:
182.74€ • 192.78$ • 152.29£
182.74€ • 192.78$ • 152.29£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9789811984594
ISBN-10: 981198459X
Pagini: 262
Ilustrații: XIV, 262 p. 104 illus., 93 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:2023
Editura: Springer Nature Singapore
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Singapore, Singapore
ISBN-10: 981198459X
Pagini: 262
Ilustrații: XIV, 262 p. 104 illus., 93 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.57 kg
Ediția:2023
Editura: Springer Nature Singapore
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Singapore, Singapore
Cuprins
Chapter 1. Symbolic Regression in Materials Science: Discovering Interatomic Potentials from Data.- Chapter 2. Correlation versus RMSE Loss Functions in Symbolic Regression Tasks.- Chapter 3. GUI-Based, Efficient Genetic Programming and AI Planning For Unity3D.- Chapter 4. Genetic Programming for Interpretable and Explainable Machine Learning.- Chapter 5. Biological Strategies ParetoGP Enables Analysis of Wide and Ill-Conditioned Data from Nonlinear Systems.- Chapter 6. GP-Based Generative Adversarial Models.- Chapter 7. Modelling Hierarchical Architectures with Genetic Programming and Neuroscience Knowledge for Image Classification through Inferential
Knowledge.- Chapter 8. Life as a Cyber-Bio-Physical System.- Chapter 9. STREAMLINE: A Simple, Transparent, End-To-End Automated Machine Learning Pipeline Facilitating Data Analysis and Algorithm Comparison.- Chapter 10. Evolving Complexity is Hard.- Chapter 11. ESSAY: Computers Are Useless ... They Only Give Us Answers.
Textul de pe ultima copertă
This book brings together some of the most impactful researchers in the field of Genetic Programming (GP), each one working on unique and interesting intersections of theoretical development and practical applications of this evolutionary-based machine learning paradigm. Topics of particular interest for this year´s book include powerful modeling techniques through GP-based symbolic regression, novel selection mechanisms that help guide the evolutionary process, modular approaches to GP, and applications in cybersecurity, biomedicine and program synthesis, as well as papers by practitioner of GP that focus on usability and real-world results. In summary, readers will get a glimpse of the current state of the art in GP research.
Caracteristici
Provides a unique combination of theoretical contributions and state-of-the-art real-world problem Explores the intersection of genetic programming and evolutionary computation in general Discusses recent results in methodological improvements to genetic programming