Genetic Programming Theory and Practice IX: Genetic and Evolutionary Computation
Editat de Rick Riolo, Ekaterina Vladislavleva, Jason H. Mooreen Limba Engleză Paperback – 29 noi 2013
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 319.76 lei 6-8 săpt. | |
Springer – 29 noi 2013 | 319.76 lei 6-8 săpt. | |
Hardback (1) | 325.76 lei 6-8 săpt. | |
Springer – noi 2011 | 325.76 lei 6-8 săpt. |
Din seria Genetic and Evolutionary Computation
- 20% Preț: 899.26 lei
- 20% Preț: 567.90 lei
- 20% Preț: 959.44 lei
- 20% Preț: 626.79 lei
- 20% Preț: 591.21 lei
- 20% Preț: 625.49 lei
- 20% Preț: 624.54 lei
- 20% Preț: 957.37 lei
- 20% Preț: 958.63 lei
- 20% Preț: 618.85 lei
- 20% Preț: 318.63 lei
- 20% Preț: 327.52 lei
- 20% Preț: 321.17 lei
- 20% Preț: 626.61 lei
- 20% Preț: 323.38 lei
- 20% Preț: 1011.01 lei
- 20% Preț: 1403.33 lei
- 20% Preț: 946.43 lei
- 20% Preț: 954.82 lei
- 20% Preț: 1008.78 lei
- 20% Preț: 1417.33 lei
- 20% Preț: 903.71 lei
- 20% Preț: 593.53 lei
Preț: 319.76 lei
Preț vechi: 399.69 lei
-20% Nou
Puncte Express: 480
Preț estimativ în valută:
61.20€ • 64.56$ • 50.100£
61.20€ • 64.56$ • 50.100£
Carte tipărită la comandă
Livrare economică 02-16 ianuarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461429418
ISBN-10: 1461429412
Pagini: 292
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
ISBN-10: 1461429412
Pagini: 292
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
Public țintă
Professional/practitionerCuprins
What’s in an evolved name? The evolution of modularity via tag-based Reference.- Let the Games Evolve!.- Novelty Search and the Problem with Objectives.- A fine-grained view of phenotypes and locality in genetic programming.- Evolution of an Effective Brain-Computer Interface Mouse via Genetic Programming with Adaptive Tarpeian Bloat Control.- Improved Time Series Prediction and Symbolic Regression with Affine Arithmetic.- Computational Complexity Analysis of Genetic Programming – Initial Results and Future Directions.- Accuracy in Symbolic Regression.- Human-Computer Interaction in a Computational Evolution System for the Genetic Analysis of Cancer.- Baseline Genetic Programming: Symbolic Regression on Benchmarks for Sensory Evaluation Modeling.- Detecting Shadow Economy Sizes With Symbolic Regression.- The Importance of Being Flat – Studying the Program Length Distributions of Operator Equalisation.- FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
Caracteristici
Describes cutting-edge work on genetic programming (GP) theory, applications of GP, and how theory can be used to guide application of GP Demonstrates large-scale applications of GP to a variety of problem domains Reveals an inspiring synergy between GP applications and the latest in theoretical results for state-of –the-art problem solving Addresses symbolic regression as a mode of genetic programming