Genetic Programming Theory and Practice IX: Genetic and Evolutionary Computation
Editat de Rick Riolo, Ekaterina Vladislavleva, Jason H. Mooreen Limba Engleză Paperback – 29 noi 2013
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 325.56 lei 43-57 zile | |
Springer – 29 noi 2013 | 325.56 lei 43-57 zile | |
Hardback (1) | 331.68 lei 43-57 zile | |
Springer – noi 2011 | 331.68 lei 43-57 zile |
Din seria Genetic and Evolutionary Computation
- 20% Preț: 915.75 lei
- 20% Preț: 578.28 lei
- 20% Preț: 977.03 lei
- 20% Preț: 638.25 lei
- 20% Preț: 602.00 lei
- 20% Preț: 636.92 lei
- 20% Preț: 635.96 lei
- 20% Preț: 974.93 lei
- 20% Preț: 976.20 lei
- 20% Preț: 630.16 lei
- 20% Preț: 324.42 lei
- 20% Preț: 333.46 lei
- 20% Preț: 327.02 lei
- 20% Preț: 638.07 lei
- 20% Preț: 329.26 lei
- 20% Preț: 1029.56 lei
- 20% Preț: 1429.09 lei
- 20% Preț: 963.77 lei
- 20% Preț: 972.32 lei
- 20% Preț: 1027.27 lei
- 20% Preț: 1443.35 lei
- 20% Preț: 920.26 lei
- 20% Preț: 593.53 lei
Preț: 325.56 lei
Preț vechi: 406.95 lei
-20% Nou
Puncte Express: 488
Preț estimativ în valută:
62.31€ • 64.72$ • 51.75£
62.31€ • 64.72$ • 51.75£
Carte tipărită la comandă
Livrare economică 03-17 februarie 25
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9781461429418
ISBN-10: 1461429412
Pagini: 292
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
ISBN-10: 1461429412
Pagini: 292
Ilustrații: XXVIII, 264 p.
Dimensiuni: 155 x 235 x 15 mm
Greutate: 0.41 kg
Ediția:2011
Editura: Springer
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:New York, NY, United States
Public țintă
Professional/practitionerCuprins
What’s in an evolved name? The evolution of modularity via tag-based Reference.- Let the Games Evolve!.- Novelty Search and the Problem with Objectives.- A fine-grained view of phenotypes and locality in genetic programming.- Evolution of an Effective Brain-Computer Interface Mouse via Genetic Programming with Adaptive Tarpeian Bloat Control.- Improved Time Series Prediction and Symbolic Regression with Affine Arithmetic.- Computational Complexity Analysis of Genetic Programming – Initial Results and Future Directions.- Accuracy in Symbolic Regression.- Human-Computer Interaction in a Computational Evolution System for the Genetic Analysis of Cancer.- Baseline Genetic Programming: Symbolic Regression on Benchmarks for Sensory Evaluation Modeling.- Detecting Shadow Economy Sizes With Symbolic Regression.- The Importance of Being Flat – Studying the Program Length Distributions of Operator Equalisation.- FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
Caracteristici
Describes cutting-edge work on genetic programming (GP) theory, applications of GP, and how theory can be used to guide application of GP Demonstrates large-scale applications of GP to a variety of problem domains Reveals an inspiring synergy between GP applications and the latest in theoretical results for state-of –the-art problem solving Addresses symbolic regression as a mode of genetic programming