Genetic Programming Theory and Practice XIII: Genetic and Evolutionary Computation
Editat de Rick Riolo, W.P. Worzel, Mark Kotanchek, Arthur Kordonen Limba Engleză Hardback – 30 dec 2016
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 633.94 lei 6-8 săpt. | |
Springer International Publishing – 7 iul 2018 | 633.94 lei 6-8 săpt. | |
Hardback (1) | 640.27 lei 6-8 săpt. | |
Springer International Publishing – 30 dec 2016 | 640.27 lei 6-8 săpt. |
Din seria Genetic and Evolutionary Computation
- 20% Preț: 918.91 lei
- 20% Preț: 580.27 lei
- 20% Preț: 980.41 lei
- 20% Preț: 640.46 lei
- 20% Preț: 604.07 lei
- 20% Preț: 639.14 lei
- 20% Preț: 326.68 lei
- 20% Preț: 638.17 lei
- 20% Preț: 978.31 lei
- 20% Preț: 979.59 lei
- 20% Preț: 632.33 lei
- 20% Preț: 325.53 lei
- 20% Preț: 334.61 lei
- 20% Preț: 328.14 lei
- 20% Preț: 330.39 lei
- 20% Preț: 1033.11 lei
- 20% Preț: 1434.04 lei
- 20% Preț: 967.11 lei
- 20% Preț: 975.69 lei
- 20% Preț: 1030.83 lei
- 20% Preț: 1448.34 lei
- 20% Preț: 923.44 lei
- 20% Preț: 593.53 lei
Preț: 640.27 lei
Preț vechi: 800.33 lei
-20% Nou
Puncte Express: 960
Preț estimativ în valută:
122.59€ • 127.65$ • 101.71£
122.59€ • 127.65$ • 101.71£
Carte tipărită la comandă
Livrare economică 14-28 februarie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783319342214
ISBN-10: 3319342215
Pagini: 260
Ilustrații: XX, 262 p. 69 illus., 31 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.58 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Cham, Switzerland
ISBN-10: 3319342215
Pagini: 260
Ilustrații: XX, 262 p. 69 illus., 31 illus. in color.
Dimensiuni: 155 x 235 x 18 mm
Greutate: 0.58 kg
Ediția:1st ed. 2016
Editura: Springer International Publishing
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Cham, Switzerland
Cuprins
Evolving Simple Symbolic Regression Models by Multi-objective Genetic Programming.- Learning Heuristics for Mining RNA Sequence-Structure Motifs.- Kaizen Programming for Feature Construction for Classification.- GP as if You Meant It: An Exercise for Mindful Practice.- nPool: Massively Distributed Simultaneous Evolution and Cross-Validation in EC-Star.- Highly Accurate Symbolic Regression with Noisy Training Data.- Using Genetic Programming for Data Science: Lessons Learned.- The Evolution of Everything (EvE) and Genetic Programming.- Lexicase selection for program synthesis: a Diversity Analysis.- Using Graph Databases to Explore the Dynamics of Genetic Programming Runs.- Predicting Product Choice with Symbolic Regression and Classification.- Multiclass Classification Through Multidimensional Clustering.- Prime-Time: Symbolic Regression takes its place in the Real World.
Caracteristici
Provides papers describing cutting-edge work on the theory and applications of genetic programming (GP) Offers large-scale, real-world applications of GP to a variety of problem domains, including financial applications, genetic analysis, product selection Theoretical exploration of controlled semantic, lexicase and other selection and crossover methods, and understanding convergence Includes supplementary material: sn.pub/extras