Genetic Programming Theory and Practice XVII: Genetic and Evolutionary Computation
Editat de Wolfgang Banzhaf, Erik Goodman, Leigh Sheneman, Leonardo Trujillo, Bill Worzelen Limba Engleză Paperback – 8 mai 2021
Toate formatele și edițiile | Preț | Express |
---|---|---|
Paperback (1) | 1050.86 lei 6-8 săpt. | |
Springer International Publishing – 8 mai 2021 | 1050.86 lei 6-8 săpt. | |
Hardback (1) | 1057.30 lei 6-8 săpt. | |
Springer International Publishing – 8 mai 2020 | 1057.30 lei 6-8 săpt. |
Din seria Genetic and Evolutionary Computation
- 20% Preț: 934.69 lei
- 20% Preț: 590.21 lei
- 20% Preț: 997.25 lei
- 20% Preț: 651.42 lei
- 20% Preț: 614.43 lei
- 20% Preț: 650.08 lei
- 20% Preț: 332.24 lei
- 20% Preț: 649.09 lei
- 20% Preț: 995.09 lei
- 20% Preț: 996.40 lei
- 20% Preț: 643.17 lei
- 20% Preț: 331.08 lei
- 20% Preț: 340.32 lei
- 20% Preț: 333.72 lei
- 20% Preț: 651.23 lei
- 20% Preț: 336.02 lei
- 20% Preț: 1458.70 lei
- 20% Preț: 983.71 lei
- 20% Preț: 992.44 lei
- 20% Preț: 1048.53 lei
- 20% Preț: 1473.24 lei
- 20% Preț: 939.31 lei
- 20% Preț: 593.53 lei
Preț: 1050.86 lei
Preț vechi: 1313.57 lei
-20% Nou
Puncte Express: 1576
Preț estimativ în valută:
201.13€ • 209.19$ • 168.55£
201.13€ • 209.19$ • 168.55£
Carte tipărită la comandă
Livrare economică 14-28 martie
Preluare comenzi: 021 569.72.76
Specificații
ISBN-13: 9783030399603
ISBN-10: 3030399605
Pagini: 409
Ilustrații: XXVI, 409 p. 142 illus., 112 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.61 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Cham, Switzerland
ISBN-10: 3030399605
Pagini: 409
Ilustrații: XXVI, 409 p. 142 illus., 112 illus. in color.
Dimensiuni: 155 x 235 mm
Greutate: 0.61 kg
Ediția:1st ed. 2020
Editura: Springer International Publishing
Colecția Springer
Seria Genetic and Evolutionary Computation
Locul publicării:Cham, Switzerland
Cuprins
1. Characterizing the Effects of Random Subsampling on Lexicase Selection.- 2. It is Time for New Perspectives on How to Fight Bloatin GP.- 3. Explorations of the Semantic Learning Machine Neuroevolution Algorithm.- 4. Can Genetic Programming Perform Explainable Machine Learning for Bioinformatics?.- 5. Symbolic Regression by Exhaustive Search – Reducing the Search Space using Syntactical Constraints and Efficient Semantic Structure Deduplication.- 6. Temporal Memory Sharing in Visual Reinforcement Learning.- 7. The Evolution of Representations in Genetic Programming Trees.- 8. How Competitive is Genetic Programming in Business Data Science Applications?.- 9. Using Modularity Metrics as Design Features to Guide Evolution in Genetic Programming.- 10. Evolutionary Computation and AI Safety.- 11. Genetic Programming Symbolic Regression.- 12. Hands-on Artificial Evolution through Brain Programming.- 13. Comparison of Linear Genome Representations For Software Synthesis.- 14. Enhanced Optimization with Composite Objectives and Novelty Pulsation.- 15. New Pathways in Coevolutionary Computation.- 16. 2019 Evolutionary Algorithms Review.- 17. Evolving a Dota 2 Hero Bot with a Probabilistic Shared Memory Model.- 18. Modelling Genetic Programming as a Simple Sampling Algorithm.- 19. An Evolutionary System for Better Automatic Software Repair.- Index.
Caracteristici
Provides contributions describing cutting-edge work on the theory and applications of genetic programming (GP) Offers large-scale, real-world applications (big data) of GP to a variety of problem domains, including commercial and scientific applications as well as financial and insurance problems Explores controlled semantics, lexicase and other selection methods, crossover techniques, diversity analysis and understanding of convergence tendencies